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Strip Packing

Consider a strip S of fixed height.

Given: A set O of axes-parallel rectangles.

Determine: Packing of O into S of minimum length.
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Strip Packing Algorithms

many heuristics that yield constant factor approximations
simplest ones:

I Next-Fit.

1. Sort the rectangles of O non-increasing width.
2. Pack the rectangles at the left end of the strip from bottom to

top.
3. If no more space on top, start a new level right of the previous

one and continue.

I First-Fit.
Similar to Next-Fit.
The next rectangle to be packed will be placed as low as
possible in the leftmost level in which it fits. A new level is
defined if no level has enough space left for the new rectangle.

both are approximation algorithms with factors 3 and 2.7 for FF
and NF, respectively !
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Reduction of Minimum Rectangle to Strip Packing

Facts:

I Strip packing is NP-hard.

I If there is an efficient α-approximation algorithm for strip
packing then for any δ > 0 there is an efficient
(1 + δ)α-approximation algorithm for finding the minimum
area a.p. rectangle for packing a.p. rectangles under
translation.

I The best approximation algorithm for strip packing known
achieves a factor of 5/3 + ε for any ε > 0 (Harren et al. 2014)
.

I For any ε > 0 there is an 5/3 + ε-approximation algorithm for
finding the smallest a.p. rectangle for packing a given set of
rectangles under translation.
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Convex Polygons Under Translation

(Alt, de Berg, Knauer, JOCG 2017)

I set P of arbitrary convex polygons

I approximating the minimum area axis-parallel rectangle
containing P under translations

I approximating the minimum area convex container for P
under translations
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Algorithm for axis-parallel rectangular containers

1. group the polygons of P into height classes:
[hmax , hmax/2), [hmax/2, hmax/4)...

2. within each class i , i = 0, 1, ...:
sort the objects by descending slopes (∈ [0, π]) of their spines
and place them as far left as possible into an axis-parallel
rectangle of height hmax/2i



Algorithm for axis-parallel rectangular containers

1. group the polygons of P into height classes:
[hmax , hmax/2), [hmax/2, hmax/4)...

2. within each class i , i = 0, 1, ...:
sort the objects by descending slopes (∈ [0, π]) of their spines
and place them as far left as possible into an axis-parallel
rectangle of height hmax/2i



Algorithm for axis-parallel rectangular containers

1. group the polygons of P into height classes:
[hmax , hmax/2), [hmax/2, hmax/4)...

2. within each class i , i = 0, 1, ...:
sort the objects by descending slopes (∈ [0, π]) of their spines
and place them as far left as possible into an axis-parallel
rectangle of height hmax/2i



Algorithm for axis-parallel rectangular containers

1. group the polygons of P into height classes:
[hmax , hmax/2), [hmax/2, hmax/4)...

2. within each class i , i = 0, 1, ...:
sort the objects by descending slopes (∈ [0, π]) of their spines
and place them as far left as possible into an axis-parallel
rectangle of height hmax/2i



Algorithm for axis-parallel rectangular containers

1. group the polygons of P into height classes:
[hmax , hmax/2), [hmax/2, hmax/4)...

2. within each class i , i = 0, 1, ...:
sort the objects by descending slopes (∈ [0, π]) of their spines
and place them as far left as possible into an axis-parallel
rectangle of height hmax/2i



Algorithm for axis-parallel rectangular containers

1. group the polygons of P into height classes:
[hmax , hmax/2), [hmax/2, hmax/4)...

2. within each class i , i = 0, 1, ...:
sort the objects by descending slopes (∈ [0, π]) of their spines
and place them as far left as possible into an axis-parallel
rectangle of height hmax/2i

3. cut the small boxes for the different height-classes into
rectangles of equal width 2wmax , stack all these rectangles,
and return the resulting rectangle



Constant factor approximation: proof idea

important observations about the optimal packing area:

1. OPT ≥ the total area of the polygons

2. OPT ≥ hmax · wmax

area used in step 2:
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1. group the polygons of P into height classes:
[hmax , hmax · α), [hmax · α, hmax · α2)...

2. within each class i , i = 0, 1, ...:
sort the objects by descending slopes (∈ [0, π]) of their spines
and place them as far left as possible into an axis-parallel
rectangle of height hmax · αi

3. cut the small boxes for the different height-classes into
rectangles of equal width cwmax , and stack all these
rectangles, and return the resulting rectangle

gives an approximation factor of f (α, c) =
(
1 + 1

c

)
· 2+cα
α−α2

this is optimal for α = 0.407.., c = 2.214.., namely 17.449...
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Algorithm for arbitrary convex containers

1. Find an orientation φ ∈ S1 which minimizes hmax(φ)wmax(φ).

2. Use the previous algorithm with respect to orientation φ.
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Results

For packing a set of convex polygons using translations:

1. An approximation to the minimum area axis parallel rectangle
can be found in O(n log n) time.

2. An approximation to the minimum area convex container can
be found in O(n log n) time.
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Results

For packing a set of convex polygons using translations:

1. An approximation to the minimum area axis parallel rectangle
can be found in O(n log n) time. Approximation factor: 18

2. An approximation to the minimum area convex container can
be found in O(n log n) time. Approximation factor: 16 + 8

√
3 = 29.86..


