Lecture 5: Circle Packing 2

Helmut Alt, Freie Universität Berlin
at 10th Winter School on Computational Geometry
Amirkabir University of Technology, Tehran
joint work with Nadja Scharf
Circle Packing Problems
Circle Packing Problems
Circle Packing Problems
Circle Packing Problems

- **given:** radius \(r = \frac{p}{q} \in \mathbb{Q} \), \(p \) and \(q \) in binary
- **find:** the maximum number of unit circles which can be packed into a circle of radius \(r : C_r \)
Circle Packing Problems

• **given:** radius \(r = \frac{p}{q} \in \mathbb{Q} \), \(p \) and \(q \) in binary
 find: the maximum number of unit circles which can be packed into a circle of radius \(r : C_r \)

 or

• **given:** number \(n \in \mathbb{N} \) in binary
 find: the minimum radius \(r \) such that \(n \) unit circles can be packed into \(C_r \)
Circle Packing Problems

• given: radius \(r = \frac{p}{q} \in \mathbb{Q} \), \(p \) and \(q \) in binary
find: the maximum number of unit circles which can be packed into a circle of radius \(r \): \(C_r \)

or

• given: number \(n \in \mathbb{N} \) in binary
find: the minimum radius \(r \) such that \(n \) unit circles can be packed into \(C_r \)

– extensively studied in mathematics for constant \(n \)
– already for \(n = 14 \) optimal solution unknown
Complexity of the Problems

Problem: short input lengths
Complexity of the Problems

Problem: short input lengths

• in NP?
Complexity of the Problems

Problem: short input lengths

- in NP? unknown
Complexity of the Problems

Problem: short input lengths

- in NP? unknown
- NP-hard?
Complexity of the Problems

Problem: short input lengths

- in NP ? unknown
- NP-hard ? unknown
Complexity of the Problems

Problem: short input lengths

• in \(\text{NP} \) ? \quad \text{unknown}

• NP-hard ? \quad \text{unknown}

• in \(\exists R \) ?
Complexity of the Problems

Problem: short input lengths

- in NP? unknown
- NP-hard? unknown
- in $\exists R$? yes, for the first problem
Complexity of the Problems

Problem: short input lengths

- in NP? unknown
- NP-hard? unknown
- in $\exists R$? yes, for the first problem thus, in PSPACE
Complexity of the Problems

Problem: short input lengths

- in NP ? unknown
- NP-hard ? unknown
- in $\exists R$? yes, for the first problem
 thus, in PSPACE

similar: pallet loading problem
Complexity of the Problems

Problem: short input lengths

- in \(\text{NP?} \) unknown
- NP-hard? unknown
- in \(\exists R ? \) yes, for the first problem, thus, in PSPACE

similar: pallet loading problem

we will show: PTAS for both variants
Infinite Packing of the Plane
packing as a **hexagonal grid** is optimal:
packing as a \textit{hexagonal grid} is optimal:

- density $\rho := \frac{\pi}{\sqrt{12}} \approx .907$
Infinite Packing of the Plane

packing as a hexagonal grid is optimal:

- density \(\rho := \frac{\pi}{\sqrt{12}} \approx 0.907 \)
- for lattices: Lagrange 1773
Infinite Packing of the Plane

packing as a **hexagonal grid** is optimal:

- density $\rho := \frac{\pi}{\sqrt{12}} \approx 0.907$
- for lattices: Lagrange 1773
- first proof by Thue 1890
Infinite Packing of the Plane

- density $\rho := \frac{\pi}{\sqrt{12}} \approx 0.907$
- for lattices: Lagrange 1773
- first proof by Thue 1890
- rigorous proof by Fejes Tóth 1942

packing as a hexagonal grid is optimal:
Brute Force Algorithm

Decision Problem:
Can \(n \) unit circles be packed into a container circle with radius \(r = \frac{p}{q} \)?
Brute Force Algorithm

Decision Problem:
Can \(n \) unit circles be packed into a container circle with radius \(r = \frac{p}{q} \)?

formulated as Tarski-formula (even \(\exists R \)):

\[
\exists (x_1, \ldots, x_n, y_1, \ldots, y_n)
\prod_{1 \leq i < j \leq n} (x_i - x_j)^2 + (y_i - y_j)^2 - 4 \geq 0 \land \prod_{i=1}^{n} (x_i^2 + y_i^2 - (r - 1)^2 \leq 0)
\]
Brute Force Algorithm

Decision Problem:
Can \(n \) unit circles be packed into a container circle with radius \(r = \frac{p}{q} \)?

formulated as Tarski-formula (even \(\exists R \)):

\[\exists (x_1, \ldots, x_n, y_1, \ldots, y_n) \]

\[\wedge_{1 \leq i < j \leq n} (x_i - x_j)^2 + (y_i - y_j)^2 - 4 \geq 0 \wedge \bigwedge_{i=1}^{n} (x_i^2 + y_i^2 - (r - 1)^2 \leq 0) \]
Brute Force Algorithm

Decision Problem:
Can n unit circles be packed into a container circle with radius $r = \frac{p}{q}$?

formulated as Tarski-formula (even $\exists \mathbb{R}$):

$$
\exists (x_1, \ldots, x_n, y_1, \ldots, y_n) \\
\left(\bigwedge_{1 \leq i < j \leq n} (x_i - x_j)^2 + (y_i - y_j)^2 - 4 \geq 0 \land \bigwedge_{i=1}^{n} (x_i^2 + y_i^2 - (r - 1)^2 \leq 0) \right)
$$
Brute Force Algorithm

Decision Problem:
Can \(n \) unit circles be packed into a container circle with radius \(r = \frac{p}{q} \)?

formulated as Tarski-formula (even \(\exists \mathbb{R} \)):

\[
\exists (x_1, \ldots, x_n, y_1, \ldots, y_n)
\]

\[
\bigwedge_{1 \leq i < j \leq n} (x_i - x_j)^2 + (y_i - y_j)^2 - 4 \geq 0 \land \bigwedge_{i=1}^{n} (x_i^2 + y_i^2 - (r - 1)^2 \leq 0)
\]

Formula can be solved in \(2^{O(r^2 \log r)} L^3 \) time with algorithm by Basu et al. 1996
Brute Force Algorithm

Decision Problem:
Can \(n \) unit circles be packed into a container circle with radius \(r = \frac{p}{q} \)?

formulated as Tarski-formula (even \(\exists \mathbb{R} \)):

\[
\exists (x_1, \ldots, x_n, y_1, \ldots, y_n)
\]

\[
\bigwedge_{1 \leq i < j \leq n} (x_i - x_j)^2 + (y_i - y_j)^2 - 4 \geq 0\quad \land\quad \bigwedge_{i=1}^{n} (x_i^2 + y_i^2 - (r - 1)^2 \leq 0)
\]

Formula can be solved in \(2^{\mathcal{O}(r^2 \log r)} L^3 \) time with algorithm by Basu et al. 1996

input length
Brute Force Algorithm

Decision Problem:
Can \(n \) unit circles be packed into a container circle with radius \(r = \frac{p}{q} \)?

formulated as Tarski-formula (even \(\exists \mathbb{R} \)):

\[
\exists (x_1, \ldots, x_n, y_1, \ldots, y_n)
\]

\[
\bigwedge_{1 \leq i < j \leq n} (x_i - x_j)^2 + (y_i - y_j)^2 - 4 \geq 0 \land \bigwedge_{i=1}^{n} (x_i^2 + y_i^2 - (r - 1)^2 \leq 0)
\]

Formula can be solved in \(2^{O(r^2 \log r)} L^3 \) time with algorithm by Basu et al. 1996

To solve optimization problem use binary search: \(1 \leq n \leq r^2 \)

\(\rightarrow \) **running time** \(2^{O(r^2 \log r)} L^3 \)
Input: Number $r > 3$, parameter $\varepsilon > 0$
Output: Integer $n(r) \geq 0$

if r is small then
 Compute $n(r)$ brute force;
end

else

end
PTAS

<table>
<thead>
<tr>
<th>Input:</th>
<th>Number $r > 3$, parameter $\varepsilon > 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output:</td>
<td>Integer $n(r) \geq 0$</td>
</tr>
<tr>
<td>if r is small then</td>
<td>Compute $n(r)$ brute force;</td>
</tr>
<tr>
<td>else</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td></td>
</tr>
</tbody>
</table>

small means $r < c \cdot \frac{1}{\varepsilon}$

\rightarrow running time

$2^{O\left(\frac{1}{\varepsilon}^2 \log \frac{1}{\varepsilon}\right)}L^3$
Input: Number $r > 3$, parameter $\varepsilon > 0$
Output: Integer $n(r) \geq 0$

if r is small then
 Compute $n(r)$ brute force;
else
 Intersect circle with radius r with optimal infinite packing;
 $n(r) =$ unit circles completely contained in container;
end

small means $r < c \cdot \frac{1}{\varepsilon}$

\rightarrow running time $2^{O\left(\frac{1}{\varepsilon^2 \log \frac{1}{\varepsilon}\right)} L^3}$
Input: Number $r > 3$, parameter $\varepsilon > 0$
Output: Integer $n(r) \geq 0$

if r is small then
 Compute $n(r)$ brute force;
end
else
 Intersect circle with radius r with optimal infinite packing;
 $n(r) =$ unit circles completely contained in container;
end

small means $r < c \cdot \frac{1}{\varepsilon}$

$\rightarrow \text{running time } 2^{O\left(\frac{1}{\varepsilon}^2 \log \frac{1}{\varepsilon}\right)} L^3$
Input: Number $r > 3$, parameter $\varepsilon > 0$
Output: Integer $n(r) \geq 0$

if r is small then
 Compute $n(r)$ brute force;
end
else
 Intersect circle with radius r with optimal infinite packing;
 $n(r) =$ unit circles completely contained in container;
end

small means $r < c \cdot \frac{1}{\varepsilon}$

→ running time $2^{O\left(\frac{1}{\varepsilon}^2 \log \frac{1}{\varepsilon}\right)}L^3$
Input: rational number $r = \frac{p}{q} > 3$, parameter $\varepsilon > 0$

Output: Integer $n(r) \geq 0$

if r is small then
 Compute $n(r)$ brute force;
end

else
 Intersect circle with radius r with optimal infinite packing;
 $n(r) =$ unit circles completely contained in container;
end

small means $r < c \cdot \frac{1}{\varepsilon}$

\rightarrow running time $2^{O\left(\frac{1}{\varepsilon^2} \log \frac{1}{\varepsilon}\right)} L^3$
Input: rational number $r = p/q > 3$, parameter $\varepsilon > 0$
Output: Integer $n(r) \geq 0$
if r is small then
 Compute $n(r)$ brute force;
end
else
 Intersect circle with radius r with optimal infinite packing;
 $n(r)$ = unit circles completely contained in container;
end

Problem: counting takes too long since number exponential in input size

small means $r < c \cdot \frac{1}{\varepsilon}$
\rightarrow running time $2^{O\left(\frac{1}{\varepsilon^2} \log \frac{1}{\varepsilon}\right)}L^3$
Input: rational number \(r = \frac{p}{q} > 3 \), parameter \(\varepsilon > 0 \)

Output: Integer \(n(r) \geq 0 \)

if \(r \) is small then

Compute \(n(r) \) brute force;

end

else

Intersect circle with radius \(r \) with optimal infinite packing;

\(n(r) = \) unit circles completely contained in container;

end

Problem: counting takes too long since number exponential in input size

Solution: use area argument
PTAS

Input: rational number \(r = \frac{p}{q} > 3 \), parameter \(\varepsilon > 0 \)

Output: Integer \(n(r) \geq 0 \)

if \(r \) is small **then**

- Compute \(n(r) \) brute force;

end

else

- Intersect circle with radius \(r \) with optimal infinite packing;

 \(n(r) = \) unit circles completely contained in container;

end

Problem: counting takes too long since number exponential in input size

Solution: use area argument

\[\text{small means } r < c \cdot \frac{1}{\varepsilon} \]

\[\rightarrow \text{ running time } 2^{O\left(\frac{1}{\varepsilon^2} \log \frac{1}{\varepsilon}\right)} L^3 \]
Input: rational number \(r = \frac{p}{q} > 3 \),
parameter \(\varepsilon > 0 \)

Output: Integer \(n(r) \geq 0 \)

if \(r \) is small **then**
- Compute \(n(r) \) brute force;
end

else
- Intersect circle with radius \(r \) with optimal infinite packing;
 \(n(r) = \) unit circles completely contained in container;
end

Problem: counting takes too long since number exponential in input size

Solution: use area argument
Input: rational number \(r = \frac{p}{q} > 3 \), parameter \(\varepsilon > 0 \)

Output: Integer \(n(r) \geq 0 \)

if \(r \) is small **then**

- Compute \(n(r) \) brute force;

end

else

- Intersect circle with radius \(r \) with optimal infinite packing;
 \(n(r) = \) unit circles completely contained in container;

end

Problem: counting takes too long since number exponential in input size

Solution: use area argument
Input: rational number \(r = \frac{p}{q} > 3 \),
parameter \(\varepsilon > 0 \)

Output: Integer \(n(r) \geq 0 \)

- If \(r \) is small then
 - Compute \(n(r) \) brute force;
- Else
 - Intersect circle with radius \(r \) with optimal infinite packing;
 - \(n(r) = \) unit circles completely contained in container;

Problem: counting takes too long since number exponential in input size

Solution: use area argument
Input: rational number \(r = \frac{p}{q} > 3 \), parameter \(\varepsilon > 0 \)

Output: Integer \(n(r) \geq 0 \)

If \(r \) is small then

- Compute \(n(r) \) brute force;

else

- Intersect circle with radius \(r \) with optimal infinite packing;
- \(n(r) = \) unit circles completely contained in container;

end
Input: rational number $r = p/q > 3$, parameter $\varepsilon > 0$

Output: Integer $n(r) \geq 0$

if r is small then

- Compute $n(r)$ brute force;

end

else

- Intersect circle with radius r with optimal infinite packing;
 - $n(r) =$ unit circles completely contained in container;

end

$n(r) \geq \# \text{●}'s \geq \# \text{▲}'s/2$
Input: rational number \(r = p/q > 3 \), parameter \(\epsilon > 0 \)

Output: Integer \(n(r) \geq 0 \)

If \(r \) is small then

- Compute \(n(r) \) brute force;

Else

- Intersect circle with radius \(r \) with optimal infinite packing;
 - \(n(r) = \) unit circles completely contained in container;

\[
n(r) \geq \# \bullet's \geq \# \triangle's/2
\]

\[
\geq \frac{\text{area}(C_{r-3})}{2 \cdot \text{area}(\triangle)}
\]
Input: rational number \(r = \frac{p}{q} > 3 \), parameter \(\varepsilon > 0 \)
Output: Integer \(n(r) \geq 0 \)

if \(r \) is small then
 Compute \(n(r) \) brute force;
else
 Intersect circle with radius \(r \) with optimal infinite packing;
 \(n(r) = \) unit circles completely contained in container;
end

\[n(r) \geq \# \text{○}'s \geq \frac{\# \text{▲}'s}{2} \]

\[\geq \frac{\text{area}(C_{r-3})}{2 \cdot \text{area}(\triangle)} = \frac{\pi (r-3)^2}{\sqrt{12}} \]
Input: Number $r > 3$, parameter $\varepsilon > 0$
Output: Integer $n(r) \geq 0$
if $r < 13 \cdot \frac{1}{\varepsilon}$ then
 Compute $n(r)$ brute force;
else
 $n(r) = \left\lceil \frac{\pi (r-3)^2}{\sqrt{12}} \right\rceil$
end

$n(r) \geq \# \text{ ●'s} \geq \# \text{ ▲'s}$/2

$\geq \frac{\text{area}(C_{r-3})}{2 \cdot \text{area}(\triangle)} = \frac{\pi (r-3)^2}{\sqrt{12}}$
Input: Number $r > 3$, parameter $\varepsilon > 0$
Output: Integer $n(r) \geq 0$
if $r < 13 \cdot \frac{1}{\varepsilon}$ then
 Compute $n(r)$ brute force;
end
else
 $n(r) = \lceil \frac{\pi(r-3)^2}{\sqrt{12}} \rceil$
end

$n(r) \geq \# \bullet \text{'s} \geq \# \triangle \text{'s}/2$

\[
\geq \frac{\text{area}(C_{r-3})}{2 \cdot \text{area}(\triangle)} = \frac{\pi(r-3)^2}{\sqrt{12}}
\]
Input: Number \(r > 3 \), parameter \(\varepsilon > 0 \)

Output: Integer \(n(r) \geq 0 \)

If \(r < 13 \cdot \frac{1}{\varepsilon} \) then

| Compute \(n(r) \) brute force; |

end

else

| \(n(r) = \left\lceil \frac{\pi(r-3)^2}{\sqrt{12}} \right\rceil \) |

end

We cannot compute these numbers exactly.
Input: Number $r > 3$, parameter $\varepsilon > 0$
Output: Integer $n(r) \geq 0$

if $r < 13 \cdot \frac{1}{\varepsilon}$ then
 Compute $n(r)$ brute force;
end
else
 $n(r) = \left\lceil \frac{\pi(r-3)^2}{\sqrt{12}} \right\rceil$
end

We cannot compute these numbers exactly.

- compute π and $\sqrt{12}$ only with the precision needed, depending on r
 → running time polynomial in input size
We cannot compute these numbers exactly.

- compute \(\pi \) and \(\sqrt{12} \) only with the precision needed, depending on \(r \)
 \(\rightarrow \) running time polynomial in input size
 \(\rightarrow \) total running time polynomial in input size
Upper Bound
packing where no circles can be added
Upper Bound
Upper Bound
Upper Bound

- Packing saturated: Triangles with some inner angle $\geq \frac{2\pi}{3}$ lie outside C_{r-3}.
Upper Bound

- Packing saturated: Triangles with some inner angle \(\geq \frac{2\pi}{3} \) lie outside \(C_{r-3} \).
Upper Bound

- Packing saturated: Triangles with some inner angle $\geq \frac{2\pi}{3}$ lie outside C_{r-3}.
Upper Bound

- Packing saturated: Triangles with some inner angle $\geq \frac{2\pi}{3}$ lie outside C_{r-3}.
• Packing saturated: Triangles with some inner angle $\geq \frac{2\pi}{3}$ lie outside C_{r-3}.
Upper Bound

- Packing saturated: Triangles with some inner angle $\geq \frac{2\pi}{3}$ lie outside C_{r-3}.
Upper Bound

- Packing saturated: Triangles with some inner angle $\geq \frac{2\pi}{3}$ lie outside C_{r-3}.
Upper Bound

- Packing saturated: Triangles with some inner angle $\geq \frac{2\pi}{3}$ lie outside C_{r-3}.
• Packing saturated: Triangles with some inner angle $\geq \frac{2\pi}{3}$ lie outside C_{r-3}.
Upper Bound

- Packing saturated: Triangles with some inner angle $\geq \frac{2\pi}{3}$ lie outside C_{r-3}.
Upper Bound

- Packing saturated: Triangles with some inner angle $\geq \frac{2\pi}{3}$ lie outside C_{r-3}.
- Density inside the union of all Delaunay triangles with at least one vertex in C_{r-3}:

$$\frac{\frac{1}{2} \cdot \text{area}(\bigcirc)}{\text{area}(\triangle)} \leq \frac{2\pi}{3}$$
Upper Bound

- Packing saturated: Triangles with some inner angle \(\geq \frac{2\pi}{3} \) lie outside \(C_{r-3} \).
- Density inside the union of all Delaunay triangles with at least one vertex in \(C_{r-3} \):
 \[
 \leq \frac{1}{2} \cdot \frac{\text{area}(\bigcirc)}{\text{area}(\triangle)} \leq \frac{2\pi}{3}
 \]
- Density of the rest of \(C_r \)
Upper Bound

- Packing saturated: Triangles with some inner angle $\geq \frac{2\pi}{3}$ lie outside C_{r-3}.
- Density inside the union of all Delaunay triangles with at least one vertex in C_{r-3}:
 $$\frac{\frac{1}{2} \cdot \text{area}(\bigcirc)}{\text{area}(\triangle)} \leq \frac{2\pi}{3}$$
- Density of the rest of C_r \leq 1
- Gives together an upper bound of $n(r) \leq \frac{\pi}{\sqrt{12}} r^2 + 6r$
Upper Bound

- Packing saturated: Triangles with some inner angle $\geq \frac{2\pi}{3}$ lie outside C_{r-3}.
- Density inside the union of all Delaunay triangles with at least one vertex in C_{r-3}:
 \[
 \frac{1}{2} \cdot \frac{\text{area} (\bigodot)}{\text{area} (\triangle)} \leq \frac{2\pi}{3}
 \]
- Density of the rest of C_r \leq 1
- Gives together an upper bound of $n(r) \leq \frac{\pi}{\sqrt{12}}r^2 + 6r$
Putting it together
so: \[
\left\lfloor \frac{\pi (r-3)^2}{\sqrt{12}} \right\rfloor \leq n(r) \leq \frac{\pi}{\sqrt{12}} r^2 + 6r
\]
Putting it together

so: \[
\left\lfloor \frac{\pi(r-3)^2}{\sqrt{12}} \right\rfloor \leq n(r) \leq \frac{\pi}{\sqrt{12}} r^2 + 6r
\]

and \[
\frac{n_{\text{approx}}(r)}{n(r)} = \frac{\left\lfloor \frac{\pi(r-3)^2}{\sqrt{12}} \right\rfloor}{n(r)} \geq \frac{\left\lfloor \frac{\pi(r-3)^2}{\sqrt{12}} \right\rfloor}{\frac{\pi}{\sqrt{12}} r^2 + 6r} \geq 1 - \varepsilon,
\]
Putting it together

so: \[
\left\lceil \frac{\pi(r-3)^2}{\sqrt{12}} \right\rceil \leq n(r) \leq \frac{\pi}{\sqrt{12}} r^2 + 6r
\]

and \[
\frac{n_{approx}(r)}{n(r)} = \frac{\left\lceil \frac{\pi(r-3)^2}{\sqrt{12}} \right\rceil}{n(r)} \geq \frac{\left\lceil \frac{\pi(r-3)^2}{\sqrt{12}} \right\rceil}{\frac{\pi}{\sqrt{12}} r^2 + 6r} \geq 1 - \varepsilon,
\]

if \(r \geq \frac{12\sqrt{3}+6\pi}{\pi} \cdot \frac{1}{\varepsilon} \leq 13 \cdot \frac{1}{\varepsilon} \)
More PTAS

Given integer $n > 0$ find the smallest r such that n unit circles can be packed into a circle with radius r.
More PTAS

Given integer $n > 0$ find the smallest r such that n unit circles can be packed into a circle with radius r.
More PTAS

Given integer $n > 0$ find the smallest r such that n unit circles can be packed into a circle with radius r.
More PTAS

Given integer \(n > 0 \) find the smallest \(r \) such that \(n \) unit circles can be packed into a circle with radius \(r \).

- Problem cannot be formulated as an \(\exists R \)-formula, but as a Tarski formula.
More PTAS

Given integer $n > 0$ find the smallest r such that n unit circles can be packed into a circle with radius r.

- Problem cannot be formulated as an $\exists R$-formula, but as a Tarski formula.
- For $n < c \cdot \frac{1}{\varepsilon}$, solve this Tarski formula in time exponential in n.
More PTAS

Given integer $n > 0$ find the smallest r such that n unit circles can be packed into a circle with radius r.

- Problem cannot be formulated as an $\exists R$-formula, but as a Tarski formula.
- For $n < c \cdot \frac{1}{\varepsilon}$, solve this Tarski formula in time exponential in n.
- For $n \geq c \cdot \frac{1}{\varepsilon}$, the bounds presented before can be transformed into bounds for this problem.
More PTAS

Given integer $n > 0$ find the smallest r such that n unit circles can be packed into a circle with radius r.

- Problem cannot be formulated as an $\exists R$-formula, but as a Tarski formula.
- For $n < c \cdot \frac{1}{\varepsilon}$, solve this Tarski formula in time exponential in n.
- For $n \geq c \cdot \frac{1}{\varepsilon}$, the bounds presented before can be transformed into bounds for this problem.
- This gives together a PTAS for the reverse problem.
More PTAS

Given integer $n > 0$ find the smallest r such that n unit circles can be packed into a circle with radius r.

- Problem cannot be formulated as an $\exists R$-formula, but as a Tarski formula.

- For $n < c \cdot \frac{1}{\varepsilon}$, solve this Tarski formula in time exponential in n.

- For $n \geq c \cdot \frac{1}{\varepsilon}$, the bounds presented before can be transformed into bounds for this problem.

- This gives together a PTAS for the reverse problem.

\rightarrow PTAS for:
PTAS for the Smallest Container Circle

Input: Integer $n \geq 1$, parameter $\varepsilon > 0$

Output: Nonnegative rational number r_{approx}

\[
\text{if } n < \left(\frac{8}{\varepsilon} + 4 \right)^2 \text{ then compute } r_{\text{approx}} \text{ with the exact algorithm}
\]

\[
\text{else } k = \lfloor \log n \rfloor + 2
\]

\[
\text{compute some } a \text{ with } 12^{\frac{1}{4}} \sqrt{n} \leq a \leq 12^{\frac{1}{4}} \sqrt{n} + 2^{-k}
\]

\[
\text{compute some } b \text{ with } \sqrt{\pi} \geq b \geq \sqrt{\pi} - 2^{-k}
\]

\[
r_{\text{approx}} = \frac{a}{b} + 3
\]

\[
\text{return } r_{\text{approx}}
\]
3 Dimensions
3 Dimensions

Kepler’s conjecture (1611) and Hales’ theorem (2017)
Kepler’s conjecture (1611) and Hales’ theorem (2017)

no arrangement of equally sized spheres filling space has a greater average density than that of the **cubic close packing** (face-centered cubic) and **hexagonal close packing** arrangements. The density of these arrangements is around 74.05%.

Wikipedia
Kepler’s conjecture (1611) and Hales’ theorem (2017)

no arrangement of equally sized spheres filling space has a greater average density than that of the **cubic close packing** (face-centered cubic) and **hexagonal close packing** arrangements. The density of these arrangements is around 74.05%.

more specifically:

for every packing V, there exists a real number c such that for every real number $r \geq 1$, the number of elements of V contained in an open spherical container of radius r centered at the origin is at most

$$\frac{\pi}{\sqrt{18}} \cdot r^3 + cr^2$$

Hales 2015
Constant c in Hales’ theorem needs to be made independent of the packing.
Constant c in Hales’ theorem needs to be made independent of the packing.

That is possible: $c = 24373$. Scharf 2017
Constant c in Hales’ theorem needs to be made independent of the packing.

That is possible: $c = 24373$. Scharf 2017

Yields PTAS for minimum sphere containing n unit spheres,
PTAS for Sphere Packing

Constant c in Hales’ theorem needs to be made independent of the packing.

That is possible: $c = 24373$. Scharf 2017

Yields PTAS for minimum sphere containing n unit spheres,

and vice-versa

PTAS for number of unit spheres that can be packed into a sphere of given radius r.
PTAS for Sphere Packing

Constant c in Hales’ theorem needs to be made independent of the packing.

That is possible: $c = 24373$. Scharf 2017

Yields PTAS for minimum sphere containing n unit spheres,

and vice-versa

PTAS for number of unit spheres that can be packed into a sphere of given radius r.