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Very Many Variants

I objects:
convex polygons (simple polygons, line segments, circles,
polyhedra, spheres...)

I feasible motion:
translation or rigid motion (= translation and rotation)

I containers:
convex polygons/polyhedra, rectangles/cuboids, strips of a
certain width/cross section

I objective function:
area/volume, circumference/surface area, diameter
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NP-completeness 1

complexity class P
(Decision-)problems, which can be answered efficiently, i.e., in
running time polynomial in the size of the input.

complexity class NP
problems, for which a given positive solution can be verified
efficiently.

Example: PARTITION

given: a sequence S = (a1, ..., an) of integers

question: Is it possible to decompose S into two subsequences
whose sums are equal?

example:
15 217 123 82 28 17 46 47 53 3 63 21 93
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NP-completeness 2

grand open problem: Is P = NP?

A problem A is called NP-hard, if any problem in NP can be
efficiently reduced to A, NP-complete, if it is in NP itself.

Example: PARTITION

Consequently:

I If there is an efficient algorithm for an NP-hard problem, then
P=NP.

I If an NP-hard problem A can be reduced efficiently to a
problem B, then B is NP-hard, as well.

It is well known: NP ⊆ PSPACE, the class of all problems solvable
in polynomial space.
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Milenkovic, Daniels STOC 1996, PhD thesis

packing by translation, techniques from linear programming

all bounds are of the form (m + n)O(k)

for k simple m-gons, container a simple n-gon, even if not convex

cooperation with apparel industry
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Packing Axes-Parallel Recangles PAR

given: a set of rectangles R, and a rectangular container R
question: can the rectangles of R be packed into R under
translation?

I Claim: PARTITION is efficiently reducible to PAR.

I for rectangular/convex polygonal containers the corresponding
optimization problems are NP-hard.
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given: a set of rectangles R, and a rectangular container R
question: can the rectangles of R be packed into R under
translation?

I Claim: PARTITION is efficiently reducible to PAR.

I Consequently: PAR is NP-complete.

I also, it follows or can easily be shown:
I packing of rectangles/arbitrary polygons into

rectangular/polygonal containers under translation/rigid
motion is NP-hard.

I for rectangular/convex polygonal containers the corresponding
optimization problems are NP-hard.
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Approximation algorithms for NP-hard optimization problems:
Find efficiently an α-approximation, i.e., a solution at most a
factor α worse than an optimal one.

3-approximation for packing axes-parallel rectangles under
translation

also possible:
3-approximation for packing axes-parallel rectangles under rigid
motion
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12-Approximation for Convex Polygons

under rigid motion, where the container is an axes-parallel
rectangle.

Fact:(Fuchs et al. 90)To any convex polygon C a rectangle R ⊆ C
can be computed efficiently where C ⊆ R ′ and R ′ is a translate of
2R. (cf. Theorem by Löwner/John for ellipses)

R

C
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It follows: Any α-approximative packing algorithm for rectangular
objects can be used to get a 4α-approximation algorithm for
convex polygonal objects.
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