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Voronoi diagrams
Fonction distance et croissance

G. Voronoï

(1868-1908)

R. Descartes

(1596-1650)
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Voronoi diagrams
Voronoi diagrams in nature
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Voronoi diagrams

A set of points P in Rd

Voronoi cell V(pi) = {x : ‖x− pi‖ ≤ ‖x− pj‖, ∀j}

Voronoi diagram (P) = { set of cells V(pi), pi ∈ P }
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Lower envelopes of functions

δi(x) = (x− pi)
2

pi

Vor(pi) = {x : δi(x) ≤ δj(x),∀j}

Vor(P) is the projection of the lower envelope of the δi

= minimization diagram of the δi

δi(x) ≤ δj(x) ⇔ hpi = pi · x− p2
i ≥ hpj = pj · x− p2

j

Vor(P) is the projection of the lower envelop of the hpi

= maximization diagram of the hpi

hpi = 0 is the hyperplane tangent toQ at p̂i
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Triangulations of finite point sets of Rd

Gluing simplices together

Triangulation of P : a maximal set of d-simplices s.t.

the intersection of two simplices is either empty or a common face
of the two simplices
the union of the simplices = conv(P)
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Delaunay Triangulations
Sur la sphère vide (On the empty sphere), Boris Delaunay (1934)

Del(P) is the nerve of Vor(P)

Theorem
If no hypersphere contains d + 2 points of P, alors
Del(P) is a triangulation of P
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Proof of Delaunay’s theorem
Linearization

Q

σ hypersphere of equation σ(x) = 0

σ(x) = x2 − 2c · x + s, s = c2 − r2

σ(x) < 0⇔
{

z < 2c · x− s (h−σ )
z = x2 (Q)

⇔ x̂ = (x, x2) ∈ h−S
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Proof of Delaunay’s theorem
Delaunay’s triangulation and convex hull

P in general position wrt spheres ⇔ P̂ in general position

σ a simplex, Bσ its circumscribing ball

σ ∈ Del(P)⇔ ∀i, pi 6∈ Bσ

⇔ ∀i, p̂i ∈ h+
σ = aff(σ̂)

⇔ σ̂ is a face of conv−(P̂)

Del(P) = proj(conv−(P̂))
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Correspondence between structures

hpi : xd+1 = 2pi · x− p2
i p̂i = (pi, p2

i ) = h∗pi

V(P) = h+p1
∩ . . . ∩ h+pn

duality−→ D(P) = conv−({p̂1, . . . , p̂n})
↑ ↓

Voronoi diagram of P nerve−→ Delaunay triang. of P

The diagram commutes if P is in general position wrt spheres
13 / 48



Happy consequences
Combinatorial complexity

The combinatorial complexity of the Voronoi diagram of n points of Rd is the
same as the combinatorial complexity of the intersection of n half-spaces of
Rd+1

The combinatorial complexity of the Delaunay triangulation of n points of Rd is
the same as the combinatorial complexity of the convex hull of n points of
Rd+1

The two complexities are the same by duality

Θ(nd d
2e) Quadratic in R3
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Happy consequences
Algorithmic complexity

Construction of Del(P), P = {p1, ..., pn} ⊂ Rd

1 Lift the points of P onto the paraboloid xd+1 = x2 of Rd+1 :
pi → p̂i = (pi, p2

i )

2 Compute conv({p̂i})
3 Project the lower hull conv−({p̂i}) onto Rd

Complexity : Θ(n log n + nb
d+1

2 c) [Clarkson & Shor 1989] [Chazelle 1993]

15 / 48



1 Voronoi diagrams and Delaunay triangulations

2 Molecules, Laguerre geometry and affine diagrams

3 Growth models and algebraic varieties
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Foam and molecules
Diagrams of spheres and unions of balls
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Orthogonal balls

Ball : b(p, r) = {x ∈ Rd : ‖p− x‖ ≤ r}

(Hyper)-sphere : ∂b(p, r) = {x ∈ Rd : ‖p− x‖ = r}

« Distance » between balls : D(b1, b2) = (p1 − p2)2 − r2
1 − r2

2

Orthogonal balls : D(b1, b2) = 0

D(b1, b2) < 0 D(b1, b2) = 0 D(b1, b2) > 0

18 / 48



Power of a point wrt to a ball
Power of x wrt b : D(x, b) = (x− p)2 − r2

Z : D is not a distance

x r

p

x ∈ intb ⇐⇒ D(x, b) < 0
x ∈ ∂b ⇐⇒ D(x, b) = 0

x 6∈ b ⇐⇒ D(x, b) > 0
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Radical hyperplane

The set of points that have a same power wrt two balls b1(p1, r1) and
b2(p2, r2) is a hyperplane

D(x, b1) = D(x, b2) ⇐⇒ (x− p1)2 − r2
1 = (x− p2)2 − r2

2
def
= r2

x

⇐⇒ −2p1x + p2
1 − r2

1 = −2p2x + p2
2 − r2

2

⇐⇒ 2(p2 − p1)x + (p2
1 − r2

1)− (p2
2 − r2

2) = 0

The radical hyperplane is the set of centres x of the balls B(x, rx) that are
orthogonal to b1 and b2
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Radical centre

There exists a unique point with a same power wrt d + 1 balls b0, ..., bd

of Rd

this point is the centre of the unique ball that is orthogonal to b0, ..., bd

Set of balls B in general position : no ball is orthogonal to d + 2 balls of
B
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Laguerre (power) diagrams

B = {b1, ..., bn}

Voronoi cell : V(bi) = {x : D(x, bi) ≤ D(x, bj)∀j}

Voronoi diagram of B : = { set of cells V(bi), bi ∈ B}
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Delaunay triangulations of balls

Vor(B) Del(B) is the nerve of Vor(B)

Theorem
If the balls are in general position, then Del(B) is a triangulation of a
subset P ′ ⊆ P of the points
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Affine diagrams

Sites + distance functions s.t. the bisectors are hyperplanes

Theorem [Aurenhammer]

Any affine diagram of Rd is the Laguerre diagram of a set of balls of Rd

Example : The intersection of a Voronoi diagram with an affine space
is a Laguerre diagram
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Voronoi diagram of order k
An example of an affine diagram

Each cell is the set of points that have the same k nearest sites
26 / 48



Voronoi diagrams of order k are Laguerre diagrams

S1, S2, . . . the subsets of k points of P

δ(x, Si) =
1
k

∑

p∈Si

(x− p)2

= x2 − 2
k

∑

p∈Si

p · x +
1
k

∑

p∈Si

p2

= D(bi, x)

where bi is the ball centered at ci = 1
k

∑
p∈Si

p

of radius r2
i = c2

i − 1
k

∑
p∈Si

p2

x ∈ Vork(Si) ⇔ δ(x, Si) ≤ δ(x, Sj) ∀j
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Delaunay triangulation restricted to a molecule

C(b) = b ∩ V(b) Vor|U(B) = {f ∈ Vor(B), f ∩ U 6= ∅}
U =

⋃
b∈B C(b) Del|U(B)
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1 Voronoi diagrams and Delaunay triangulations

2 Molecules, Laguerre geometry and affine diagrams

3 Growth models and algebraic varieties
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Distance functions and growth models
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Möbius diagrams

Wi = (pi, λi, µi)

δM(x,Wi) = λi‖x− pi‖2 − µi

Mob(Wi) = {x, δ(x, σi) ≤ δ(x, σj)}

Bisectors are hyperspheres (hyperplanes or ∅)
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Linearization
A Möbius diagram of Rd is the restriction of an affine diagram of Rd+1

Q

Lift the spherical bisectors onto Q and take the polar hyperplanes

The hyperplanes define an affine diagram Vor(B) in Rd+1

The faces of the Möbius diagram are the projections of the faces of
Vor(B) ∩Q
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Corollaries

1 Any spherical diagram (i.e. whose bisectors are hyperspheres) is
a Möbius diagram

2 The set of Möbius diagrams is stable under Möbius transformation

3 The intersection of a spherical diagram with an affine subspace is
a spherical diagram

4 Z : the nerve of a Möbius diagram has a realization in Rd+1 but is
not (in general) a triangulation of Rd
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Anisotropic Voronoi diagrams

Metric at p : Mp : d × d matrix that is symetric, positive definite

dp(x, y) =
√

(x− y)t Mp (x− y)

Introduction

Labelle and Shewchuck approach
Let D ⌃ Rd be a domain
with a metric field defined on D :
�p ↵ D �� Mp.

dp(x , y) =
q

(x � y)tMp(x � y)

Anisotropic Voronoi diagram
P a set of sites in D
�p ↵ P , Voronoi cell V (p)

V (p) = {x ↵ Rd : dp(p, x) ⌅ dq(q, x),

�q ↵ P , q �= p}

Cells are not connected.
The dual is not a triangulation.
Labelle and Shewchuck approach :
refine the set of sites until
the dual is a triangulation.
Works only in 2D.

MY (INRIA Sophia Antipolis) Anisotropic Delaunay Meshes WIAS, May 2011 8 / 40

[Labelle & Shewchuk 2003]

V(p) = {x : dp(x, p) ≤ dq(x, q) for all p, q ∈ P}
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Linearization
To any point x = (x1, . . . , xd) ∈ Rd , associate the two points

x̃ = (xixj, 1 ≤ i ≤ j ≤ d) ∈ R
d(d+1)

2

x̂ = (x, x̃) ∈ RD, D =
d(d + 3)

2

Observe that Q =
{

x̂, x ∈ Rd
}

is a « surface » of dimension d in RD

By elementary calculations : dp(x, p)2 = −2 p̂t x̂ + pt Mp p

which implies

dp(x, p) < dq(x, q) ⇔ (x̂− p̂)2− (p̂2− pt Mp p) < (x̂− q̂)2− (q̂2− qt Mq q)

Theorem
The anisotropic Voronoi diagram of P is the projection of the restriction of the
Laguerre diagram of a set of n balls restricted to Q
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Information geometry
Statistical spaces

A point represents a probability density function (pdf), for example the
isotropic gaussian defined in Rd

f (x, µ, σ) =
1√
2πσ

exp
(−‖x− µ‖

2σ2

)

can be represented by the point (µ, σ) in the space

H = {(µ, σ) ∈ Rd+1, σ > 0}

What distance in those spaces ?
Can we define and construct Voronoi diagrams in statistical
spaces ?
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Bregman divergences

F a strictly convex and differentiable function defined on a convex set
X

DF(p,q) = F(p)− F(q)− 〈p− q,∇F(q)〉

F

X
pq

p̂

q̂

Hq

DF (p||q)

DF is not a distance but DF(p,q) ≥ 0 and DF(p,q) = 0 iff p = q
37 / 48



Examples of Bregman divergences

F(x) = x2 : Squared euclidean distance

DF(p,q) = F(p)−F(q)−〈p−q,∇F(q)〉 = p2−q2−〈p−q, 2q〉 = ‖p−q‖2

F(p) =
∑

p(x) log2 p(x) (Shannon entropy)
DF(p, q) =

∑
x p(x) log2

p(x)
q(x) (K-L divergence)

F(p) = −∑x log p(x) (Burg entropy )
DF(p, q) =

∑
x(

p(x)
q(x) log p(x)

q(x) − 1) (Itakura-Saito)

38 / 48



Examples of Bregman divergences

F(x) = x2 : Squared euclidean distance

DF(p,q) = F(p)−F(q)−〈p−q,∇F(q)〉 = p2−q2−〈p−q, 2q〉 = ‖p−q‖2

F(p) =
∑

p(x) log2 p(x) (Shannon entropy)
DF(p, q) =

∑
x p(x) log2

p(x)
q(x) (K-L divergence)

F(p) = −∑x log p(x) (Burg entropy )
DF(p, q) =

∑
x(

p(x)
q(x) log p(x)

q(x) − 1) (Itakura-Saito)

38 / 48



Examples of Bregman divergences

F(x) = x2 : Squared euclidean distance

DF(p,q) = F(p)−F(q)−〈p−q,∇F(q)〉 = p2−q2−〈p−q, 2q〉 = ‖p−q‖2

F(p) =
∑

p(x) log2 p(x) (Shannon entropy)
DF(p, q) =

∑
x p(x) log2

p(x)
q(x) (K-L divergence)

F(p) = −∑x log p(x) (Burg entropy )
DF(p, q) =

∑
x(

p(x)
q(x) log p(x)

q(x) − 1) (Itakura-Saito)

38 / 48



Bregman diagrams
[Boissonnat, Nielsen, Nock 2010]

DF(p,q) = F(p)− F(q)− 〈p− q,∇F(q)〉

Two types of bisectors

Hpq : DF(x,p) = DF(x,q) (hyperplane)

H∗pq : DF(p, x) = DF(q, x) (hypersurface)

Bregman diagrams

Two types of Bregman diagrams
By the Legendre duality : DF(x, y) = DF∗(y′, x′) (x′ = ∇F(x))
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Bregman diagrams and Laguerre diagrams

The Bregman diagram of the 1st type of a set of n sites of P is identical
to the Laguerre diagram of n euclidian balls centered at the points p′i

DF(x, pi) ≤ DF(x, pj)

⇐⇒ −F(pi)− 〈x− pi, p′i 〉) ≤ −F(pj)− 〈x− pj, p′j 〉)

⇐⇒ 〈x, x〉 − 2〈x, p′i 〉 − 2F(pi) + 2〈pi, p′i 〉 ≤ 〈x, x〉 − 2〈x, p′j 〉 − 2F(pj) + 2〈pj, p′j 〉

⇐⇒ 〈x− p′i , x− p′i 〉 − r2
i ≤ 〈x− p′j , x− p′j 〉 − r2

j

où r2
l = 〈p′l , p

′
l 〉+ 2(F(pl)− 〈pl, p′l 〉)

41 / 48



Bregman diagrams and Laguerre diagrams

The Bregman diagram of the 1st type of a set of n sites of P is identical
to the Laguerre diagram of n euclidian balls centered at the points p′i

DF(x, pi) ≤ DF(x, pj)

⇐⇒ −F(pi)− 〈x− pi, p′i 〉) ≤ −F(pj)− 〈x− pj, p′j 〉)
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Bregman spheres

Definition : σ(c, r) = {x ∈ X | DF(x, c) = r}

Lemma The image σ̂ of a Bregman
sphere σ by the lifting map onto F is
contained in a hyperplane Hσ

Conversely, the intersection of any
hyperplane H with F projects vertically
onto a Bregman sphere

F

X
pq

p̂

q̂

Hq

DF (p||q)

Lemma A d-simplex has a unique circumscribing Bregman
hypersphere
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Bregman triangulations

Definition : the Bregman triangulation of P, BT(P) is the nerve of

the Bregman diagram of P of the 1st type

and therefore also of a Laguerre diagram of P ′

Characteristic property : The Bregman sphere circumscribing any
simplex of BT(P) is empty
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Examples

(a) Ordinary Delaunay (b) Exponential loss (c) Hellinger-like divergence
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Unions of Bregman balls of types 1 and 2

The combinatorial and algorithmic complexity of a union of Bregman
balls is the same as for euclidean balls

The same is true for unions of balls of the 2nd type (via Legendre
transform which is a homeomorphism (if F is a Legendre function)
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Next lectures

Practical combinatorial and algorithmic complexity

More general metrics

Triangulation of surfaces and other curved spaces

Open question

Combinatorial complexity of the additively weighted Voronoi
diagram
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Legendre duality

Convex conjugate : F∗(x′) = x · x′ − F(x)

F (x)=〈x′,y〉 − F ∗(x′)

x
(0,−F ∗(x′))

y

F : z = F (y)

x̂

z

Gradient space : Ω′ = {∇F(x), x ∈ Ω}

F is a function of Legendre type if Ω′ is convex
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Legendre duality
Properties of functions of Legendre type

(F∗)∗ = F

F∗ is strictly convex and differentiable

Writing y′ = ∇F(y) : F∗(y′) = −F(y) + 〈y, y′〉
∇∗F = ∇−1

F

DF(x, y) = F(x)− F(y)− 〈x− y, y′〉
= −F∗(x′) + 〈x, x′〉+ F∗(y′)− 〈x, y′〉
= DF∗(y′, x′)
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