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Delaunay triangulations of manifolds

@ Delaunay triangulations in Euclidean and Laguerre geometry
@ Good triangulations

© Computational Topology

© Shape reconstruction

© Delaunay triangulation of manifolds
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@ Voronoi diagrams and Delaunay triangulations



Voronoi diagrams

Fonction distance et croissance

G. Voronoi
(1868-1908)

R. Descartes
(1596-1650)
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Voronoi diagrams

Voronoi diagrams in nature
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Voronoi diagrams

A set of points P in R¢

Voronoi cell Vipi) = {x: [|x —pill < llx—pjll, ¥}

Voronoi diagram (P) = {setofcells V(p;),p; € P}
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Lower envelopes of functions

@ Vor(p;) = {x: 6;(x) < 6;(x),V}

@ Vor(P) is the projection of the lower envelope of the ¢;
= minimization diagram of the ¢;
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Lower envelopes of functions

@ Vor(p;) = {x: 6;(x) < 6;(x),V}

@ Vor(P) is the projection of the lower envelope of the ¢;
= minimization diagram of the ¢;

° 6i<x)S6j(x> And hPi:pi'x_PizZth:pj'x_pj2

@ Vor(P) is the projection of the lower envelop of the £,
= maximization diagram of the #,,
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Triangulations of finite point sets of R?

Gluing simplices together

Triangulation of P : a maximal set of d-simplices s.t.

@ the intersection of two simplices is either empty or a common face
of the two simplices

@ the union of the simplices = conv(P)
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Delaunay Triangulations
Sur la sphere vide (On the empty sphere), Boris Delaunay (1934)

Del(P) is the nerve of Vor(P)
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Delaunay Triangulations
Sur la sphere vide (On the empty sphere), Boris Delaunay (1934)

Del(P) is the nerve of Vor(P)

Theorem

If no hypersphere contains d + 2 points of P, alors
Del(’P) is a triangulation of P
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Proof of Delaunay’s theorem

Linearization

o hypersphere of equation o(x) =0

o(x)=x*—2c-x+s, s=c—1r?
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Proof of Delaunay’s theorem

Linearization

\ o hypersphere of equation o(x) =0
( M o) =x—2c-xts s=c P
Q\&/
o(x) <0 { S 73
@ =

&%= (x,x*) € hy
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Proof of Delaunay’s theorem

Delaunay’s triangulation and convex hull

P in general position wrt spheres < P in general position
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Proof of Delaunay’s theorem

Delaunay’s triangulation and convex hull

P in general position wrt spheres < P in general position

o a simplex, B, its circumscribing ball
o € Del(P) & Vi, p; & B,
& Vi, pi € hf = aff(6)

A~

< 6 is a face of conv™(P)

Del(P) = proj(conv™ (P)) J
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Correspondence between structures

hy, t Xgp1 = 2p; - x — p? pi = (pi,p}) = b,

duality
—

V(P)=hin...nkt
T +

D(P) = Conv_({ﬁl’ o aﬁn})

nerve
—

Voronoi diagram of P Delaunay triang. of P

The diagram commutes if P is in general position wrt spheres
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Happy consequences

Combinatorial complexity

The combinatorial complexity of the Voronoi diagram of n points of R? is the

same as the combinatorial complexity of the intersection of n half-spaces of
R4+1

The combinatorial complexity of the Delaunay triangulation of n points of R¢ is

the same as the combinatorial complexity of the convex hull of n points of
Rd+l

The two complexities are the same by duality

Quadratic in R3
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Happy consequences

Algorithmic complexity

Construction of Del(P), P = {p1,...,pn} C R?

1 Lift the points of P onto the paraboloid x,; = x> of R*! :
pi — pi = (pi,p})
2 Compute conv({p;})

3 Project the lower hull conv=({p;}) onto R?

Complexity : ©(nlogn + nL%J) [Clarkson & Shor 1989] [Chazelle 1993]
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9 Molecules, Laguerre geometry and affine diagrams
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Foam and molecules
Diagrams of spheres and unions of balls
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Orthogonal balls
Ball : b(p,r) ={xeR?: ||p—x|| <r}
(Hyper)-sphere : db(p,r) = {x e R : |p — x| = r}
2 2

« Distance » between balls : D(by,by) = (p1 — p2)* — 1} — 13

Orthogonal balls : D(by,b;) =0

D(b],bz) <0 D(b],bz) =0 D(bl,bz) >0

18/48



Power of a point wrt to a ball

Power of x wrt b : D(x,b) = (x — p)* — r*

: D is not a distance

x€inthb < D(x,b) <0
x€db < D(x,b)=0
x¢b < D(x,b)>0
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Radical hyperplane

@ The set of points that have a same power wrt two balls b, (p, 1) and
by(p2,12) is @ hyperplane

def
D(x,bl) = D(x,bz) < (x—p1)2 — r% = (x—pz)z — r% < r)zc

<~ —2pix —|—p% — rf = —2prx —&—p% — r%
= 2p—p)x+(Pi—r)—(p3—r3)=0

OCP ©
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Radical hyperplane

@ The set of points that have a same power wrt two balls b, (p, 1) and
by(p2,12) is @ hyperplane

def
D(x,bl) = D(x,bz) < (x—pl)z — r% = (x—pz)z — r% < r)%

<~ —2pix —|—p% — rf = —2prx —&—p% — r%
= 2p—p)x+(Pi—r)—(p3—r3)=0

OCP ©

@ The radical hyperplane is the set of centres x of the balls B(x, r,) that are
orthogonal to b, and b,
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Radical centre

There exists a unique point with a same power wrt d + 1 balls by, ..., by
of R¢

this point is the centre of the unique ball that is orthogonal to by, ..., by

Set of balls B in general position : no ball is orthogonal to d + 2 balls of
B
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Laguerre (power) diagrams

B ={bi,....b,}

Voronoi cell : V(b;) = {x : D(x,b;) < D(x,b;)Vj}
Voronoi diagram of B : = { set of cells V(b;), b; € B}
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Delaunay triangulations of balls

Vor(B) Del(B) is the nerve of Vor(B)
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Delaunay triangulations of balls

Vor(B) Del(B) is the nerve of Vor(B)

If the balls are in general position, then Del(B) is a triangulation of a

Theorem
subset P’ C P of the points J

23/48



Correspondence between structures

hbi:xd+1=2p,-~x—p,-2+r,-2 Bi=(pi,p?—r?)=hi,»

V(B)=hfn...nh duality D(B) = conv=({by,...,b,})
T i
Voronoi diagram of B = Delaunay triang. of B

The diagram commutes if B is in general position
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Affine diagrams

Sites + distance functions s.t. the bisectors are hyperplanes

Theorem [Aurenhammer]

Any affine diagram of R? is the Laguerre diagram of a set of balls of R¢

Example : The intersection of a Voronoi diagram with an affine space
is a Laguerre diagram
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Voronoi diagram of order k

An example of an affine diagram

Each cell is the set of points that have the same k nearest sites
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Voronoi diagrams of order k are Laguerre diagrams

S1,82, ... the subsets of k points of P

L)

PES;

= xz—% Zp~x+% a

PES; PESi
= D(b,»,x)

where b; is the ball  centered at ¢ = 1> ¢ p

2 _
of radius 17 =cf —} 3 e P

X € VOI'k(S,') =4 (5()(, S,) < 6()(, Sj) \V/_]
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Delaunay triangulation restricted to a molecule

y=bNV(b Vor|;(B) = {f € Vor(B), fnU# 0}

U Upes () Del|;(B)
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e Growth models and algebraic varieties
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Distance functions and growth models
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Mdobius diagrams

HG = O7h Aiaﬁ”)
Om (o, Wi) = Aillx = pill* — pi

Mob(W;) = {x,6(x,0;) < §(x,0)}
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Mdobius diagrams

Wi = (pi, Nis i)
S (x, W) = Nillx = pil|* —

Mob(W;) = {x,6(x,0;) < §(x,0)}

Bisectors are hyperspheres (hyperplanes or ()
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Linearization
A Mébius diagram of R? is the restriction of an affine diagram of R¢*!

- ™
\ )
W
Q \ ' . //
N 4
\7//
R .
- /

Lift the spherical bisectors onto Q and take the polar hyperplanes
The hyperplanes define an affine diagram Vor(B) in R¢+!

The faces of the Mébius diagram are the projections of the faces of
Vor(B) N Q
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Corollaries

@ Any spherical diagram (i.e. whose bisectors are hyperspheres) is
a Mébius diagram
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Corollaries

@ Any spherical diagram (i.e. whose bisectors are hyperspheres) is
a Mbébius diagram

© The set of Mébius diagrams is stable under Mébius transformation

© The intersection of a spherical diagram with an affine subspace is
a spherical diagram

o : the nerve of a Mdbius diagram has a realization in R+ but is
not (in general) a triangulation of R¢
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Anisotropic Voronoi diagrams

Metric at p : M), : d x d matrix that is symetric, positive definite

dp(,y) =/ (x = y)' My (x — )

[Labelle & Shewchuk 2003]

V(p) = {x:dy(x,p) < dy(x,q) forall p,q e P}
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Linearization

To any point x = (x1,...,x;) € R?, associate the two points
o= (wy1<i<j<d) eR“T
dld+3
= (i er?, poddrd)

2
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Linearization

To any point x = (x1,...,x;) € R?, associate the two points
o= (wy1<i<j<d) eR“T
dld+3
i = (x,%) cRP, D:%

@ Observe that Q = {&, x € R’} is a « surface » of dimension d in R”
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Linearization

To any point x = (x1,...,x;) € R?, associate the two points
o= (xx,1<i<j<d)eR"S
dld+3
i = (x,%) cRP, D:%

@ Observe that Q = {&, x € R’} is a « surface » of dimension d in R”

@ By elementary calculations :  d,(x,p)> = —2p'%+p'M,p
which implies
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Linearization

To any point x = (x1,...,x;) € R?, associate the two points
o= (wy1<i<j<d) eR“T
dld+3
i = (x,%) cRP, D:%

@ Observe that Q = {&, x € R’} is a « surface » of dimension d in R”

@ By elementary calculations :  d,(x,p)> = —2p'%+p'M,p
which implies
dy(x,p) <dylx,q) & (=p)’—(@"—p'Myp) < (3-3)°— (@ —q'Myq)

Theorem

The anisotropic Voronoi diagram of P is the projection of the restriction of the
Laguerre diagram of a set of n balls restricted to ©
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Information geometry
Statistical spaces

A point represents a probability density function (pdf), for example the
isotropic gaussian defined in R?

_ 1 —[lx — gl
f(x7 K, U) - \/277TU exp ( 20_2
can be represented by the point (x4, o) in the space

H={(u,0) e R 5 >0}
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Information geometry
Statistical spaces

A point represents a probability density function (pdf), for example the
isotropic gaussian defined in R?

_ 1 —[lx — gl
f(x7 K, U) - \/277TU exp < 20_2
can be represented by the point (x4, o) in the space

H={(u,0) e R 5 >0}

@ What distance in those spaces ?

@ Can we define and construct Voronoi diagrams in statistical
spaces ?
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Bregman divergences

F a strictly convex and differentiable function defined on a convex set
X

Dr(p,q) = F(p) — F(q) — (p — q, Vr(q))

Dr is not a distance but Dr(p,q) > 0 and Dp(p,q) =0 iff p=q
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Examples of Bregman divergences

@ F(x) = x* : Squared euclidean distance

Dr(p.q) = F(p)—F(q)—(p—q, Vr(q)) = p’—¢°—(p—q,2q) = |[p—q|
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Examples of Bregman divergences

@ F(x) = x* : Squared euclidean distance

Dr(p,q) = F(p)—F(q)—(p—q, Vr(q)) = p*~¢’—(p—q,2q) = [[p—q||*

@ F(p) => p(x)log, p(x) (Shannon entropy)

Dr(p,q) = >_,p(x)log, ‘Z% (K-L divergence)
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Examples of Bregman divergences

@ F(x) = x* : Squared euclidean distance

Dr(p,q) = F(p)—F(q)—(p—q, Vr(q)) = p*~¢’—(p—q,2q) = [[p—q||*

@ F(p) = p(x)log, p(x) (Shannon entropy)
Dr(p,q) = >_,p(x)log, ‘Z% (K-L divergence)
@ F(p) =—>_ logp(x) (Burg entropy )

Dr(p,q) = Zx(z% log i[% -1) (Itakura-Saito)
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Bregman diagrams

[Boissonnat, Nielsen, Nock 2010]

Dr(p,q) = F(p) — F(q) — (P — q, VF(q))

Two types of bisectors

Hpq : Dp(x,p) = Dr(x,q) (hyperplane)
H,,:Dr(p,x) = Dr(q,x) (hypersurface)
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Bregman diagrams
[Boissonnat, Nielsen, Nock 2010]

Dr(p,q) = F(p) — F(q) — (p — q, Vr(q))

Two types of bisectors

Hpq : Dp(x,p) = Dr(x,q) (hyperplane)
H,,:Dr(p,x) = Dr(q,x) (hypersurface)

Bregman diagrams

@ Two types of Bregman diagrams
@ By the Legendre duality : Dp(x,y) = Dp«(y', X)

(x' = Vg (x))
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Bregman diagrams and Laguerre diagrams

The Bregman diagram of the 1st type of a set of n sites of P is identical
to the Laguerre diagram of n euclidian balls centered at the points p;
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Bregman diagrams and Laguerre diagrams

The Bregman diagram of the 1st type of a set of n sites of P is identical
to the Laguerre diagram of n euclidian balls centered at the points p;

Dr(x,pi) < Dr(x,p))

—F(pi) — (x = pi,p})) < —F(py) — (x — p;, p}))

(x,%) = 2(x, p}) — 2F(pi) + 2(pi, ;) < (x,%) — 2{x,p;) — 2F(p;) + 2{p;, p;)
(x—pl,x—p}) —r7 < (x—p},x—p}) =17

117

ou 7 = (p},p]) + 2(F(p;) — (p1, p}))
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Bregman spheres

Definition : o(e,r) = {x € X | Dp(x,¢) = r}

Lemma The image ¢ of a Bregman
sphere ¢ by the lifting map onto F is
contained in a hyperplane H,

Conversely, the intersection of any
hyperplane H with F projects vertically Hy
onto a Bregman sphere x

Lemma A d-simplex has a unique circumscribing Bregman
hypersphere
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Bregman triangulations

Definition : the Bregman triangulation of P, BT(P) is the nerve of
the Bregman diagram of P of the 1st type

and therefore also of a Laguerre diagram of P’

Characteristic property : The Bregman sphere circumscribing any
simplex of BT (P) is empty
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Examples




Unions of Bregman balls of types 1 and 2

@ The combinatorial and algorithmic complexity of a union of Bregman
balls is the same as for euclidean balls
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Unions of Bregman balls of types 1 and 2

@ The combinatorial and algorithmic complexity of a union of Bregman
balls is the same as for euclidean balls

@ The same is true for unions of balls of the 2nd type (via Legendre
transform which is a homeomorphism (if F is a Legendre function)
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Next lectures

@ Practical combinatorial and algorithmic complexity
@ More general metrics

@ Triangulation of surfaces and other curved spaces

Open question

@ Combinatorial complexity of the additively weighted Voronoi
diagram
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Legendre duality

Convex conjugate : F*(x') =x-x — F(x)

Gradient space : ¥ = {VF(x),x € Q}

F is a function of Legendre type if ' is convex
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Legendre duality

Properties of functions of Legendre type

@ (F*)*=F

@ F* is strictly convex and differentiable

@ Writing y' = V& (y) : FX(y') = =F(y) +(y,¥)
Vi=Vg!

Dr(x,y) = F(x)-F(y) - (x-y,Y)
= —F'(X)+ (xxX)+F(y) - (x,5)
= DF*(ylaxl)
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