Delaunay triangulations of manifolds

Jean-Daniel Boissonnat INRIA

Winter School on Computational Geometry Amirkabir University of technology Tehran, February 28 - March 5, 2018

Delaunay triangulations of manifolds

- Delaunay triangulations in Euclidean and Laguerre geometry
- Good triangulations
- Omputational Topology
- Shape reconstruction
- Oblight Delaunay triangulation of manifolds

Bibliography

H. Edelsbrunner

Geometry and Topology for Mesh Generation, Cambridge 2001

T. Dey

Curve and surface reconstruction, Cambridge 2006

H. Edelsbrunner and J. Harer

Computational Topology, AMS 2010

S-W. Cheng, T. Dey, J. Shewchuk Delaunay Mesh Generation, CRC Press 2012.

J-D. Boissonnat, F. Chazal, M. Yvinec Geometric and Topological Inference, Cambridge 2018

2 Molecules, Laguerre geometry and affine diagrams

Voronoi diagrams

Fonction distance et croissance

G. Voronoï (1868-1908)

R. Descartes (1596-1650)

Voronoi diagrams

Voronoi diagrams in nature

Voronoi diagrams

A set of points \mathcal{P} in \mathbb{R}^d

Voronoi cell

$$W(p_i) = \{x : ||x - p_i|| \le ||x - p_j||, \forall j\}$$

Voronoi diagram $(\mathcal{P}) = \{ \text{ set of cells } V(p_i), p_i \in \mathcal{P} \}$

Lower envelopes of functions

• Vor
$$(p_i) = \{x : \delta_i(x) \le \delta_j(x), \forall j\}$$

Vor(P) is the projection of the lower envelope of the δ_i
= minimization diagram of the δ_i

•
$$\delta_i(x) \le \delta_j(x) \quad \Leftrightarrow \quad h_{p_i} = p_i \cdot x - p_i^2 \ge h_{p_j} = p_j \cdot x - p_j^2$$

 Vor(P) is the projection of the lower envelop of the h_{pi} = maximization diagram of the h_{pi}

Lower envelopes of functions

• Vor
$$(p_i) = \{x : \delta_i(x) \le \delta_j(x), \forall j\}$$

Vor(P) is the projection of the lower envelope of the δ_i
= minimization diagram of the δ_i

•
$$\delta_i(x) \le \delta_j(x) \quad \Leftrightarrow \quad h_{p_i} = p_i \cdot x - p_i^2 \ge h_{p_j} = p_j \cdot x - p_j^2$$

 Vor(P) is the projection of the lower envelop of the h_{pi} = maximization diagram of the h_{pi}

Triangulations of finite point sets of \mathbb{R}^d

Gluing simplices together

Triangulation of \mathcal{P} : a maximal set of *d*-simplices s.t.

- the intersection of two simplices is either empty or a common face of the two simplices
- the union of the simplices $= \operatorname{conv}(\mathcal{P})$

Delaunay Triangulations

Sur la sphère vide (On the empty sphere), Boris Delaunay (1934)

$Del(\mathcal{P})$ is the nerve of $Vor(\mathcal{P})$

Theorem

If no hypersphere contains d + 2 points of \mathcal{P} , alors $Del(\mathcal{P})$ is a triangulation of \mathcal{P}

Delaunay Triangulations

Sur la sphère vide (On the empty sphere), Boris Delaunay (1934)

$Del(\mathcal{P})$ is the nerve of $Vor(\mathcal{P})$

Theorem

If no hypersphere contains d + 2 points of \mathcal{P} , alors $Del(\mathcal{P})$ is a triangulation of \mathcal{P}

Delaunay Triangulations

Sur la sphère vide (On the empty sphere), Boris Delaunay (1934)

$Del(\mathcal{P})$ is the nerve of $Vor(\mathcal{P})$

Theorem

If no hypersphere contains d + 2 points of \mathcal{P} , alors $Del(\mathcal{P})$ is a triangulation of \mathcal{P}

Linearization

$$\sigma$$
 hypersphere of equation $\sigma(x) = 0$
 $\sigma(x) = x^2 - 2c \cdot x + s, \ s = c^2 - r^2$

$$\sigma(x) < 0 \Leftrightarrow \begin{cases} z < 2c \cdot x - s & (h_{\sigma}^{-}) \\ z = x^{2} & (\mathcal{Q}) \end{cases}$$

 $\Leftrightarrow \hat{x} = (x, x^2) \in h_S^-$

Linearization

$$\sigma$$
 hypersphere of equation $\sigma(x) = 0$
 $\sigma(x) = x^2 - 2c \cdot x + s, \ s = c^2 - r^2$

$$\sigma(x) < 0 \Leftrightarrow \begin{cases} z < 2c \cdot x - s & (h_{\sigma}^{-}) \\ z = x^{2} & (Q) \end{cases}$$

 $\Leftrightarrow \hat{x} = (x, x^2) \in h_S^-$

Linearization

$$\sigma$$
 hypersphere of equation $\sigma(x) = 0$
 $\sigma(x) = x^2 - 2c \cdot x + s, \ s = c^2 - r^2$

$$\sigma(x) < 0 \Leftrightarrow \begin{cases} z < 2c \cdot x - s & (h_{\sigma}^{-}) \\ z = x^{2} & (Q) \end{cases}$$

 $\Leftrightarrow \hat{x} = (x, x^2) \in h_S^-$

Delaunay's triangulation and convex hull

 $\mathcal P$ in general position wrt spheres $\quad \Leftrightarrow \quad \hat{\mathcal P}$ in general position

 σ a simplex, B_σ its circumscribing ball

 $\sigma \in \mathrm{Del}(\mathcal{P}) \Leftrightarrow \forall i, \ p_i \notin B_{\sigma}$

 $\Leftrightarrow \forall i, \hat{p}_i \in h_{\sigma}^+ = \operatorname{aff}(\hat{\sigma})$

 $\Leftrightarrow \hat{\sigma} \text{ is a face of } \operatorname{conv}^{-}(\hat{\mathcal{P}})$

Delaunay's triangulation and convex hull

 \mathcal{P} in general position wrt spheres $\Leftrightarrow \hat{\mathcal{P}}$ in general position

 σ a simplex, B_{σ} its circumscribing ball

 $\sigma \in \mathrm{Del}(\mathcal{P}) \Leftrightarrow \forall i, \ p_i \notin B_{\sigma}$

 $\Leftrightarrow \forall i, \hat{p}_i \in h_{\sigma}^+ = \operatorname{aff}(\hat{\sigma})$

 $\Leftrightarrow \hat{\sigma}$ is a face of $\operatorname{conv}^{-}(\hat{\mathcal{P}})$

Delaunay's triangulation and convex hull

 \mathcal{P} in general position wrt spheres $\Leftrightarrow \hat{\mathcal{P}}$ in general position

 σ a simplex, B_σ its circumscribing ball

 $\sigma \in \mathrm{Del}(\mathcal{P}) \Leftrightarrow \forall i, \ p_i \notin B_{\sigma}$

 $\Leftrightarrow \forall i, \ \hat{p}_i \in h_{\sigma}^+ = \operatorname{aff}(\hat{\sigma})$

 $\Leftrightarrow \hat{\sigma}$ is a face of $\operatorname{conv}^{-}(\hat{\mathcal{P}})$

Delaunay's triangulation and convex hull

 \mathcal{P} in general position wrt spheres $\Leftrightarrow \hat{\mathcal{P}}$ in general position

 σ a simplex, B_{σ} its circumscribing ball

 $\sigma \in \mathrm{Del}(\mathcal{P}) \Leftrightarrow \forall i, \ p_i \notin B_{\sigma}$

 $\Leftrightarrow \forall i, \hat{p}_i \in h_{\sigma}^+ = \operatorname{aff}(\hat{\sigma})$

 $\Leftrightarrow \hat{\sigma}$ is a face of $\operatorname{conv}^-(\hat{\mathcal{P}})$

Delaunay's triangulation and convex hull

 \mathcal{P} in general position wrt spheres $\Leftrightarrow \hat{\mathcal{P}}$ in general position

 σ a simplex, B_{σ} its circumscribing ball

 $\sigma \in \mathrm{Del}(\mathcal{P}) \Leftrightarrow \forall i, \ p_i \notin B_{\sigma}$

$$\Leftrightarrow \forall i, \hat{p}_i \in h_{\sigma}^+ = \operatorname{aff}(\hat{\sigma})$$

 $\Leftrightarrow \hat{\sigma} \text{ is a face of } \operatorname{conv}^{-}(\hat{\mathcal{P}})$

Delaunay's triangulation and convex hull

 $\mathcal P$ in general position wrt spheres $\quad \Leftrightarrow \quad \hat{\mathcal P}$ in general position

 σ a simplex, B_{σ} its circumscribing ball

 $\sigma \in \mathrm{Del}(\mathcal{P}) \Leftrightarrow \forall i, \ p_i \notin B_{\sigma}$

$$\Leftrightarrow \forall i, \hat{p}_i \in h_{\sigma}^+ = \operatorname{aff}(\hat{\sigma})$$

 $\Leftrightarrow \hat{\sigma} \text{ is a face of } \operatorname{conv}^{-}(\hat{\mathcal{P}})$

Correspondence between structures

$$\hat{p}_i : x_{d+1} = 2p_i \cdot x - p_i^2$$
 $\hat{p}_i = (p_i, p_i^2) = h_p^*$

The diagram commutes if \mathcal{P} is in general position wrt spheres

Happy consequences

Combinatorial complexity

The combinatorial complexity of the Voronoi diagram of *n* points of \mathbb{R}^d is the same as the combinatorial complexity of the intersection of *n* half-spaces of \mathbb{R}^{d+1}

The combinatorial complexity of the Delaunay triangulation of *n* points of \mathbb{R}^d is the same as the combinatorial complexity of the convex hull of *n* points of \mathbb{R}^{d+1}

The two complexities are the same by duality

Construction of $Del(\mathcal{P}), \ \mathcal{P} = \{p_1, ..., p_n\} \subset \mathbb{R}^d$

- 1 Lift the points of \mathcal{P} onto the paraboloid $x_{d+1} = x^2$ of \mathbb{R}^{d+1} : $p_i \to \hat{p}_i = (p_i, p_i^2)$
- 2 Compute $conv(\{\hat{p}_i\})$
- 3 Project the lower hull $\operatorname{conv}^{-}(\{\hat{p}_i\})$ onto \mathbb{R}^d

Complexity : $\Theta(n \log n + n^{\lfloor \frac{d+1}{2} \rfloor})$ [Clarkson & Shor 1989] [Chazelle 1993]

Foam and molecules

Diagrams of spheres and unions of balls

Orthogonal balls

Ball : $b(p, r) = \{x \in \mathbb{R}^d : ||p - x|| \le r\}$

(Hyper)-sphere : $\partial b(p, r) = \{x \in \mathbb{R}^d : ||p - x|| = r\}$

« Distance » between balls : $D(b_1, b_2) = (p_1 - p_2)^2 - r_1^2 - r_2^2$

Orthogonal balls : $D(b_1, b_2) = 0$

Power of a point wrt to a ball

Power of *x* wrt *b* :
$$D(x, b) = (x - p)^2 - r^2$$

Z: D is not a distance

$$\begin{array}{lll} x \in \operatorname{int} b & \Longleftrightarrow & D(x,b) < 0 \\ x \in \partial b & \Longleftrightarrow & D(x,b) = 0 \\ x \notin b & \Longleftrightarrow & D(x,b) > 0 \end{array}$$

Radical hyperplane

• The set of points that have a same power wrt two balls $b_1(p_1, r_1)$ and $b_2(p_2, r_2)$ is a hyperplane

$$D(x, b_1) = D(x, b_2) \iff (x - p_1)^2 - r_1^2 = (x - p_2)^2 - r_2^2 \stackrel{\text{def}}{=} r_x^2$$

$$\iff -2p_1 x + p_1^2 - r_1^2 = -2p_2 x + p_2^2 - r_2^2$$

$$\iff 2(p_2 - p_1)x + (p_1^2 - r_1^2) - (p_2^2 - r_2^2) = 0$$

The radical hyperplane is the set of centres x of the balls B(x, rx) that are orthogonal to b1 and b2

Radical hyperplane

• The set of points that have a same power wrt two balls $b_1(p_1, r_1)$ and $b_2(p_2, r_2)$ is a hyperplane

$$D(x, b_1) = D(x, b_2) \iff (x - p_1)^2 - r_1^2 = (x - p_2)^2 - r_2^2 \stackrel{\text{def}}{=} r_x^2$$

$$\iff -2p_1 x + p_1^2 - r_1^2 = -2p_2 x + p_2^2 - r_2^2$$

$$\iff 2(p_2 - p_1)x + (p_1^2 - r_1^2) - (p_2^2 - r_2^2) = 0$$

The radical hyperplane is the set of centres x of the balls B(x, rx) that are orthogonal to b1 and b2

Radical centre

There exists a unique point with a same power wrt d + 1 balls $b_0, ..., b_d$ of \mathbb{R}^d

this point is the centre of the unique ball that is orthogonal to $b_0, ..., b_d$

Set of balls \mathcal{B} in general position : no ball is orthogonal to d + 2 balls of \mathcal{B}

Laguerre (power) diagrams

 $\mathcal{B} = \{b_1,...,b_n\}$

Voronoi cell : $V(b_i) = \{x : D(x, b_i) \le D(x, b_j) \forall j\}$

Voronoi diagram of \mathcal{B} : = { set of cells $V(b_i), b_i \in \mathcal{B}$ }

Delaunay triangulations of balls

 $\operatorname{Vor}(\mathcal{B})$

 $\text{Del}(\mathcal{B})$ is the nerve of $\text{Vor}(\mathcal{B})$

Theorem

If the balls are in general position, then $Del(\mathcal{B})$ is a triangulation of a subset $\mathcal{P}' \subseteq \mathcal{P}$ of the points

Delaunay triangulations of balls

 $\operatorname{Vor}(\mathcal{B})$

 $\text{Del}(\mathcal{B})$ is the nerve of $\text{Vor}(\mathcal{B})$

Theorem

If the balls are in general position, then $Del(\mathcal{B})$ is a triangulation of a subset $\mathcal{P}'\subseteq \mathcal{P}$ of the points

Correspondence between structures

$$h_{b_i}: x_{d+1} = 2p_i \cdot x - p_i^2 + r_i^2$$
 $\hat{b}_i = (p_i, p_i^2 - r_i^2) = h_{b_i}^*$

$\mathcal{V}(\mathcal{B})=h_{b_1}^+\cap\ldots\cap h_{b_n}^+$	$\stackrel{\text{duality}}{\longrightarrow}$	$\mathcal{D}(\mathcal{B}) = conv^-(\{\hat{b}_1, \dots, \hat{b}_n\})$
\uparrow		\downarrow
Voronoi diagram of \mathcal{B}	$\xrightarrow{\text{nerve}}$	Delaunay triang. of \mathcal{B}

The diagram commutes if \mathcal{B} is in general position
Sites + distance functions s.t. the bisectors are hyperplanes

Theorem [Aurenhammer]

Any affine diagram of \mathbb{R}^d is the Laguerre diagram of a set of balls of \mathbb{R}^d

Example : The intersection of a Voronoi diagram with an affine space is a Laguerre diagram

Voronoi diagram of order k

An example of an affine diagram

Each cell is the set of points that have the same k nearest sites

Voronoi diagrams of order k are Laguerre diagrams

 S_1, S_2, \ldots the subsets of *k* points of \mathcal{P}

$$\delta(x, S_i) = \frac{1}{k} \sum_{p \in S_i} (x - p)^2$$
$$= x^2 - \frac{2}{k} \sum_{p \in S_i} p \cdot x + \frac{1}{k} \sum_{p \in S_i} p^2$$
$$= D(b_i, x)$$

where b_i is the ball centered at $c_i = \frac{1}{k} \sum_{p \in S_i} p$

of radius
$$r_i^2 = c_i^2 - \frac{1}{k} \sum_{p \in S_i} p^2$$

 $x \in \operatorname{Vor}_k(S_i) \quad \Leftrightarrow \quad \delta(x, S_i) \le \delta(x, S_j) \quad \forall j$

Delaunay triangulation restricted to a molecule

 $\begin{array}{ll} C(b) = b \cap V(b) & \operatorname{Vor}_{|U}(\mathcal{B}) = \{f \in \operatorname{Vor}(\mathcal{B}), & f \cap U \neq \emptyset\} \\ U = \bigcup_{b \in \mathcal{B}} C(b) & \operatorname{Del}_{|U}(\mathcal{B}) \end{array}$

Distance functions and growth models

Möbius diagrams

$$W_i = (p_i, \lambda_i, \mu_i)$$

$$\delta_M(x, W_i) = \lambda_i ||x - p_i||^2 - \mu_i$$

$$\mathsf{Mob}(W_i) = \{x, \delta(x, \sigma_i) \le \delta(x, \sigma_j)\}$$

Bisectors are hyperspheres (hyperplanes or \emptyset)

Möbius diagrams

 $W_i = (p_i, \lambda_i, \mu_i)$

$$\delta_M(x, W_i) = \lambda_i ||x - p_i||^2 - \mu_i$$

$$\mathsf{Mob}(W_i) = \{x, \delta(x, \sigma_i) \le \delta(x, \sigma_j)\}$$

Bisectors are hyperspheres (hyperplanes or \emptyset)

A Möbius diagram of \mathbb{R}^d is the restriction of an affine diagram of \mathbb{R}^{d+1}

Lift the spherical bisectors onto \mathcal{Q} and take the polar hyperplanes

The hyperplanes define an affine diagram $Vor(\mathcal{B})$ in \mathbb{R}^{d+1}

The faces of the Möbius diagram are the projections of the faces of $V\!or(\mathcal{B})\cap \mathcal{Q}$

Corollaries

Any spherical diagram (i.e. whose bisectors are hyperspheres) is a Möbius diagram

- 2 The set of Möbius diagrams is stable under Möbius transformation
- 3 The intersection of a spherical diagram with an affine subspace is a spherical diagram
- **2** : the nerve of a Möbius diagram has a realization in \mathbb{R}^{d+1} but is not (in general) a triangulation of \mathbb{R}^d

- Any spherical diagram (i.e. whose bisectors are hyperspheres) is a Möbius diagram
- 2 The set of Möbius diagrams is stable under Möbius transformation
- The intersection of a spherical diagram with an affine subspace is a spherical diagram
- **2** : the nerve of a Möbius diagram has a realization in \mathbb{R}^{d+1} but is not (in general) a triangulation of \mathbb{R}^d

- Any spherical diagram (i.e. whose bisectors are hyperspheres) is a Möbius diagram
- 2 The set of Möbius diagrams is stable under Möbius transformation
- The intersection of a spherical diagram with an affine subspace is a spherical diagram
- **2** : the nerve of a Möbius diagram has a realization in \mathbb{R}^{d+1} but is not (in general) a triangulation of \mathbb{R}^d

- Any spherical diagram (i.e. whose bisectors are hyperspheres) is a Möbius diagram
- **2** The set of Möbius diagrams is stable under Möbius transformation
- The intersection of a spherical diagram with an affine subspace is a spherical diagram
- **2** : the nerve of a Möbius diagram has a realization in \mathbb{R}^{d+1} but is not (in general) a triangulation of \mathbb{R}^d

Anisotropic Voronoi diagrams

Metric at $p: M_p: d \times d$ matrix that is symetric, positive definite

$$d_p(x, y) = \sqrt{(x - y)^t M_p (x - y)}$$

[Labelle & Shewchuk 2003]

$$V(p) = \{x : d_p(x, p) \le d_q(x, q) \text{ for all } p, q \in P\}$$

To any point $x = (x_1, \dots, x_d) \in \mathbb{R}^d$, associate the two points $\tilde{x} = (x_i x_j, 1 \le i \le j \le d) \in \mathbb{R}^{\frac{d(d+1)}{2}}$ $\hat{x} = (x, \tilde{x}) \in \mathbb{R}^D, \ D = \frac{d(d+3)}{2}$

• Observe that $\mathcal{Q} = \{\hat{x}, x \in \mathbb{R}^d\}$ is a « surface » of dimension d in \mathbb{R}^D

• By elementary calculations : $d_p(x,p)^2 = -2\hat{p}'\hat{x} + p'M_pp$ which implies

 $d_p(x,p) < d_q(x,q) \quad \Leftrightarrow \quad (\hat{x} - \hat{p})^2 - (\hat{p}^2 - p^t M_p p) < (\hat{x} - \hat{q})^2 - (\hat{q}^2 - q^t M_q q)$

Theorem

To any point $x = (x_1, \dots, x_d) \in \mathbb{R}^d$, associate the two points $\tilde{x} = (x_i x_j, 1 \le i \le j \le d) \in \mathbb{R}^{\frac{d(d+1)}{2}}$ $\hat{x} = (x, \tilde{x}) \in \mathbb{R}^D, D = \frac{d(d+3)}{2}$

• Observe that $\mathcal{Q} = \{\hat{x}, x \in \mathbb{R}^d\}$ is a « surface » of dimension d in \mathbb{R}^D

• By elementary calculations : $d_p(x,p)^2 = -2\hat{p}^t\hat{x} + p^tM_pp$ which implies

 $d_p(x,p) < d_q(x,q) \quad \Leftrightarrow \quad (\hat{x} - \hat{p})^2 - (\hat{p}^2 - p^t M_p p) < (\hat{x} - \hat{q})^2 - (\hat{q}^2 - q^t M_q q)$

Theorem

To any point $x = (x_1, \dots, x_d) \in \mathbb{R}^d$, associate the two points

$$\begin{split} \tilde{x} &= (x_i x_j, 1 \leq i \leq j \leq d) \in \mathbb{R}^{\frac{d(d+1)}{2}} \\ \hat{x} &= (x, \tilde{x}) \in \mathbb{R}^D, \ D = \frac{d(d+3)}{2} \end{split}$$

• Observe that $\mathcal{Q} = \{\hat{x}, x \in \mathbb{R}^d\}$ is a « surface » of dimension d in \mathbb{R}^D

• By elementary calculations : $d_p(x,p)^2 = -2 \hat{p}^t \hat{x} + p^t M_p p$ which implies

 $d_p(x,p) < d_q(x,q) \quad \Leftrightarrow \quad (\hat{x} - \hat{p})^2 - (\hat{p}^2 - p^t M_p p) < (\hat{x} - \hat{q})^2 - (\hat{q}^2 - q^t M_q q)$

Theorem

To any point $x = (x_1, \dots, x_d) \in \mathbb{R}^d$, associate the two points

$$\begin{aligned} \tilde{x} &= (x_i x_j, 1 \leq i \leq j \leq d) \in \mathbb{R}^{\frac{d(d+1)}{2}} \\ \hat{x} &= (x, \tilde{x}) \in \mathbb{R}^D, \ D = \frac{d(d+3)}{2} \end{aligned}$$

• Observe that $\mathcal{Q} = \{\hat{x}, x \in \mathbb{R}^d\}$ is a « surface » of dimension d in \mathbb{R}^D

• By elementary calculations : $d_p(x,p)^2 = -2 \hat{p}^t \hat{x} + p^t M_p p$ which implies

 $d_p(x,p) < d_q(x,q) \quad \Leftrightarrow \quad (\hat{x} - \hat{p})^2 - (\hat{p}^2 - p^t M_p p) < (\hat{x} - \hat{q})^2 - (\hat{q}^2 - q^t M_q q)$

Theorem

Information geometry

Statistical spaces

A point represents a probability density function (pdf), for example the isotropic gaussian defined in \mathbb{R}^d

$$f(x,\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(\frac{-\|x-\mu\|}{2\sigma^2}\right)$$

can be represented by the point (μ, σ) in the space

$$H = \{(\mu, \sigma) \in \mathbb{R}^{d+1}, \sigma > 0\}$$

- What distance in those spaces?
- Can we define and construct Voronoi diagrams in statistical spaces ?

Information geometry

Statistical spaces

A point represents a probability density function (pdf), for example the isotropic gaussian defined in \mathbb{R}^d

$$f(x,\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(\frac{-\|x-\mu\|}{2\sigma^2}\right)$$

can be represented by the point (μ, σ) in the space

$$H = \{(\mu, \sigma) \in \mathbb{R}^{d+1}, \sigma > 0\}$$

- What distance in those spaces?
- Can we define and construct Voronoi diagrams in statistical spaces ?

Bregman divergences

 ${\it F}$ a strictly convex and differentiable function defined on a convex set ${\cal X}$

 $D_F(\mathbf{p},\mathbf{q}) = F(\mathbf{p}) - F(\mathbf{q}) - \langle \mathbf{p} - \mathbf{q}, \boldsymbol{\nabla}_F(\mathbf{q}) \rangle$

 D_F is not a distance but $D_F(\mathbf{p}, \mathbf{q}) \ge 0$ and $D_F(\mathbf{p}, \mathbf{q}) = 0$ iff $\mathbf{p} = \mathbf{q}$

Examples of Bregman divergences

• $F(x) = x^2$: Squared euclidean distance

$$D_F(\mathbf{p},\mathbf{q}) = F(\mathbf{p}) - F(\mathbf{q}) - \langle \mathbf{p} - \mathbf{q}, \nabla_F(\mathbf{q}) \rangle = \mathbf{p}^2 - \mathbf{q}^2 - \langle \mathbf{p} - \mathbf{q}, 2\mathbf{q} \rangle = \|\mathbf{p} - \mathbf{q}\|^2$$

• $F(p) = \sum p(x) \log_2 p(x)$ $D_F(p,q) = \sum_x p(x) \log_2 \frac{p(x)}{q(x)}$ (Shannon entropy) (K-L divergence)

• $F(p) = -\sum_{x} \log p(x)$ $D_F(p,q) = \sum_{x} \left(\frac{p(x)}{q(x)} \log \frac{p(x)}{q(x)} - 1\right)$

(Burg entropy) (Itakura-Saito)

Examples of Bregman divergences

• $F(x) = x^2$: Squared euclidean distance

$$D_F(\mathbf{p},\mathbf{q}) = F(\mathbf{p}) - F(\mathbf{q}) - \langle \mathbf{p} - \mathbf{q}, \mathbf{\nabla}_F(\mathbf{q}) \rangle = \mathbf{p}^2 - \mathbf{q}^2 - \langle \mathbf{p} - \mathbf{q}, 2\mathbf{q} \rangle = \|\mathbf{p} - \mathbf{q}\|^2$$

•
$$F(p) = \sum p(x) \log_2 p(x)$$

 $D_F(p,q) = \sum_x p(x) \log_2 \frac{p(x)}{q(x)}$

(Shannon entropy) (K-L divergence)

• $F(p) = -\sum_{x} \log p(x)$ $D_F(p,q) = \sum_{x} \left(\frac{p(x)}{q(x)} \log \frac{p(x)}{q(x)} - 1\right)$

(Burg entropy) (Itakura-Saito)

Examples of Bregman divergences

• $F(x) = x^2$: Squared euclidean distance

$$D_F(\mathbf{p},\mathbf{q}) = F(\mathbf{p}) - F(\mathbf{q}) - \langle \mathbf{p} - \mathbf{q}, \nabla_F(\mathbf{q}) \rangle = \mathbf{p}^2 - \mathbf{q}^2 - \langle \mathbf{p} - \mathbf{q}, 2\mathbf{q} \rangle = \|\mathbf{p} - \mathbf{q}\|^2$$

•
$$F(p) = \sum p(x) \log_2 p(x)$$
 (Shannon entropy)
 $D_F(p,q) = \sum_x p(x) \log_2 \frac{p(x)}{q(x)}$ (K-L divergence)

•
$$F(p) = -\sum_{x} \log p(x)$$
$$D_F(p,q) = \sum_{x} \left(\frac{p(x)}{q(x)} \log \frac{p(x)}{q(x)} - 1\right)$$

(Burg entropy) (Itakura-Saito)

Bregman diagrams

[Boissonnat, Nielsen, Nock 2010]

$$D_F(\mathbf{p},\mathbf{q}) = F(\mathbf{p}) - F(\mathbf{q}) - \langle \mathbf{p} - \mathbf{q}, \boldsymbol{\nabla}_F(\mathbf{q}) \rangle$$

Two types of bisectors

$$H_{pq}: D_F(\mathbf{x}, \mathbf{p}) = D_F(\mathbf{x}, \mathbf{q})$$
 (hyperplane)
 $H_{pq}^*: D_F(\mathbf{p}, \mathbf{x}) = D_F(\mathbf{q}, \mathbf{x})$ (hypersurface)

Bregman diagrams

- Two types of Bregman diagrams
- By the Legendre duality : $D_F(\mathbf{x}, \mathbf{y}) = D_{F^*}(\mathbf{y}', \mathbf{x}')$ $(\mathbf{x}' = \nabla_F(x))$

Bregman diagrams

[Boissonnat, Nielsen, Nock 2010]

$$D_F(\mathbf{p},\mathbf{q}) = F(\mathbf{p}) - F(\mathbf{q}) - \langle \mathbf{p} - \mathbf{q}, \boldsymbol{\nabla}_F(\mathbf{q}) \rangle$$

Two types of bisectors

$$H_{pq}: D_F(\mathbf{x}, \mathbf{p}) = D_F(\mathbf{x}, \mathbf{q})$$
 (hyperplane)
 $H_{pq}^*: D_F(\mathbf{p}, \mathbf{x}) = D_F(\mathbf{q}, \mathbf{x})$ (hypersurface)

Bregman diagrams

- Two types of Bregman diagrams
- By the Legendre duality : $D_F(\mathbf{x}, \mathbf{y}) = D_{F^*}(\mathbf{y}', \mathbf{x}')$ $(\mathbf{x}' = \nabla_F(x))$

The Bregman diagram of the 1st type of a set of *n* sites of \mathcal{P} is identical to the Laguerre diagram of *n* euclidian balls centered at the points \mathbf{p}'_i

$$\begin{aligned} &D_F(\mathbf{x}, \mathbf{p}_i) \leq D_F(\mathbf{x}, \mathbf{p}_j) \\ \iff &-F(\mathbf{p}_i) - \langle \mathbf{x} - \mathbf{p}_i, \mathbf{p}_i' \rangle) \leq -F(\mathbf{p}_j) - \langle \mathbf{x} - \mathbf{p}_j, \mathbf{p}_j' \rangle) \\ \iff &\langle \mathbf{x}, \mathbf{x} \rangle - 2\langle \mathbf{x}, \mathbf{p}_i' \rangle - 2F(\mathbf{p}_i) + 2\langle \mathbf{p}_i, \mathbf{p}_i' \rangle \leq \langle \mathbf{x}, \mathbf{x} \rangle - 2\langle \mathbf{x}, \mathbf{p}_j' \rangle - 2F(\mathbf{p}_j) + 2\langle \mathbf{p}_j, \mathbf{p}_j' \rangle \\ \iff &\langle \mathbf{x} - \mathbf{p}_i', \mathbf{x} - \mathbf{p}_i' \rangle - r_i^2 \leq \langle \mathbf{x} - \mathbf{p}_j', \mathbf{x} - \mathbf{p}_j' \rangle - r_j^2 \end{aligned}$$

où $r_l^2 = \langle \mathbf{p}_l', \mathbf{p}_l' \rangle + 2(F(\mathbf{p}_l) - \langle \mathbf{p}_l, \mathbf{p}_l' \rangle)$

The Bregman diagram of the 1st type of a set of *n* sites of \mathcal{P} is identical to the Laguerre diagram of *n* euclidian balls centered at the points \mathbf{p}'_i

$$D_F(\mathbf{x}, \mathbf{p}_i) \leq D_F(\mathbf{x}, \mathbf{p}_j)$$

$$\iff -F(\mathbf{p}_i) - \langle \mathbf{x} - \mathbf{p}_i, \mathbf{p}'_i \rangle) \leq -F(\mathbf{p}_j) - \langle \mathbf{x} - \mathbf{p}_j, \mathbf{p}'_j \rangle)$$

$$\iff \langle \mathbf{x}, \mathbf{x} \rangle - 2\langle \mathbf{x}, \mathbf{p}'_i \rangle - 2F(\mathbf{p}_i) + 2\langle \mathbf{p}_i, \mathbf{p}'_i \rangle \leq \langle \mathbf{x}, \mathbf{x} \rangle - 2\langle \mathbf{x}, \mathbf{p}'_j \rangle - 2F(\mathbf{p}_j) + 2\langle \mathbf{p}_j, \mathbf{p}'_j \rangle$$

$$\iff \langle \mathbf{x} - \mathbf{p}'_i, \mathbf{x} - \mathbf{p}'_i \rangle - r_i^2 \leq \langle \mathbf{x} - \mathbf{p}'_j, \mathbf{x} - \mathbf{p}'_j \rangle - r_j^2$$

où $r_l^2 = \langle \mathbf{p}_l', \mathbf{p}_l' \rangle + 2(F(\mathbf{p}_l) - \langle \mathbf{p}_l, \mathbf{p}_l' \rangle)$

Bregman spheres

Definition : $\sigma(\mathbf{c}, r) = {\mathbf{x} \in \mathcal{X} \mid D_F(\mathbf{x}, \mathbf{c}) = r}$

Lemma The image $\hat{\sigma}$ of a Bregman sphere σ by the lifting map onto \mathcal{F} is contained in a hyperplane H_{σ}

Conversely, the intersection of any hyperplane H with \mathcal{F} projects vertically onto a Bregman sphere

Lemma A *d*-simplex has a unique circumscribing Bregman hypersphere

Definition : the Bregman triangulation of \mathcal{P} , $BT(\mathcal{P})$ is the nerve of

the Bregman diagram of \mathcal{P} of the 1st type

and therefore also of a Laguerre diagram of \mathcal{P}^\prime

Characteristic property : The Bregman sphere circumscribing any simplex of $BT(\mathcal{P})$ is empty

Examples

(b) Exponential loss

(C) Hellinger-like divergence

Unions of Bregman balls of types 1 and 2

• The combinatorial and algorithmic complexity of a union of Bregman balls is the same as for euclidean balls

• The same is true for unions of balls of the 2nd type (via Legendre transform which is a homeomorphism (if *F* is a Legendre function)

Unions of Bregman balls of types 1 and 2

- The combinatorial and algorithmic complexity of a union of Bregman balls is the same as for euclidean balls
- The same is true for unions of balls of the 2nd type (via Legendre transform which is a homeomorphism (if *F* is a Legendre function)

Next lectures

- Practical combinatorial and algorithmic complexity
- More general metrics
- Triangulation of surfaces and other curved spaces

Open question

Combinatorial complexity of the additively weighted Voronoi diagram

Legendre duality

Convex conjugate : $F^*(x') = x \cdot x' - F(x)$

Gradient space : $\Omega' = \{\nabla F(x), x \in \Omega\}$

F is a function of Legendre type if Ω' is convex
Legendre duality

Properties of functions of Legendre type

- $(F^*)^* = F$
- F* is strictly convex and differentiable

• Writing
$$\mathbf{y}' = \mathbf{\nabla}_F(\mathbf{y})$$
: $F^*(\mathbf{y}') = -F(\mathbf{y}) + \langle \mathbf{y}, \mathbf{y}' \rangle$
 $\mathbf{\nabla}_F^* = \mathbf{\nabla}_F^{-1}$

$$D_F(\mathbf{x}, \mathbf{y}) = F(\mathbf{x}) - F(\mathbf{y}) - \langle \mathbf{x} - \mathbf{y}, \mathbf{y}' \rangle$$

= $-F^*(\mathbf{x}') + \langle \mathbf{x}, \mathbf{x}' \rangle + F^*(\mathbf{y}') - \langle \mathbf{x}, \mathbf{y}' \rangle$
= $D_{F^*}(\mathbf{y}', \mathbf{x}')$