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Topological spaces

A topology on a set X is a family O of subsets of X that satisfies the
three following conditions :

1 the empty set ∅ and X are elements of O,
2 any union of elements of O is an element of O,
3 any finite intersection of elements of O is an element of O.

The set X together with the family O, whose elements are called open
sets, is a topological space.
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Continuous mappings between topological spaces
Homeomorphism

Homeomorphism

f : X → Y is a bijective mapping that is
continuous and has a continuous inverse

X ≈ Y

Embedding

If f : X → Y is a homeomorphism onto its image, f is called an
embedding of X into Y

5 / 43



Are these objects homeomorphic ?
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Are these objects homeomorphic ?
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Continuous mappings between topological spaces
Homotopy

Two continuous mappings f0, f1 : X → Y are homotopic
if there exists a continuous mapping h : [0, 1]× X → Y s.t.

∀x ∈ X, h(0, x) = f0(x) et h(1, x) = f1(x)

Deformation retract : f : X → Y ⊆ X is a deformation retract if f is
homotopic to the identity

8 / 43



Continuous mappings between topological spaces
Homotopy

Two continuous mappings f0, f1 : X → Y are homotopic
if there exists a continuous mapping h : [0, 1]× X → Y s.t.

∀x ∈ X, h(0, x) = f0(x) et h(1, x) = f1(x)

Deformation retract : f : X → Y ⊆ X is a deformation retract if f is
homotopic to the identity

8 / 43



Continuous mappings between topological spaces
Homotopy equivalence

24 CHAPTER 1. TOPOLOGICAL SPACES

equivalence between spaces called homotopy equivalence.

Given two topological spaces X and Y , two maps f0, f1 : X ! Y are
homotopic if there exists a continuous map H : [0, 1]⇥X ! Y such that for
all x 2 X, H(0, x) = f0(x) and H(1, x) = f1(x). Homotopy equivalence is
defined in the following way.

Definition 1.9 (Homotopy equivalence) Two topological spaces X and
Y have the same homotopy type (or are homotopy equivalent) if there exist
two continuous maps f : X ! Y and g : Y ! X such that g�f is homotopic
to the identity map in X and f � g is homotopic to the identity map in Y .

As an example, the unit ball in an Euclidean space and a point are homo-
topy equivalent but not homeomorphic. A circle and an annulus are also
homotopy equivalent - see Figure 1.2 and Exercises 1.8.

f0(x) = x

ft(x) = (1 � t)x

f1(x) = 0

homotopy equiv.

homotopy equiv.

not homotopy equiv.

Figure 1.2: An example of two maps that are homotopic (left) and examples
of spaces that are homotopy equivalent, but not homeomorphic (right).

Definition 1.10 (Contractible space) A contractible space is a space that
has the same homotopy type as a single point.

For example, a segment, or more generally any ball in an Euclidean space
Rd is contractible - see Exercise 1.7.

It is often di�cult to prove homotopy equivalence directly from the defini-
tion. When Y is a subset of X, the following criterion reveals useful to prove
homotopy equivalence between X and Y .

Proposition 1.11 If Y ⇢ X and if there exists a continuous map H :
[0, 1]⇥X ! X such that:

X and Y have the same homotopy type (X ' Y) if there exists two
continuous mappings f : X → Y and g : Y → X s.t.

f ◦ g is homotopic to the identity mapping in Y

g ◦ f is homotopic to the identity mapping in X

X is contractible if it has the same homotopy type as a point
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Curves, surfaces and manifolds
Charts, atlases and transition maps

Rm

M

Nj
Ni

φi φj

Uij Uji

φji

Ui
Uj

Rm

Manifold : X is a manifold without boundary of dimension k if any x ∈ X has a
neighborhood that is homeomorphic to an open ball of dimension k of Rk

Chart : φi homeomorphism

Transition map : φij mapping between charts

Example : Configuration spaces of mechanisms
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Intrinsic dimension and embedding

Whitney’s embedding theorem

Any manifold of dimension k can be embedded in R2k+1

Some surfaces like the Klein bottle
cannot be embedded in R3
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The configuration space of cyclo-octane C8H16
Stratified manifolds

 

Figure 1.  Conformation Space of Cyclo-Octane.  The set of conformations of cyclo-octane can 
be represented as a surface in a high dimensional space.  On the left, we show various 
conformations of cyclo-octane.  In the center, these conformations are represented by the 3D 
coordinates of their atoms.  On the right, a dimension reduction algorithm is used to obtain a 
lower dimensional visualization of the data. 

 

 

Figure 2. Decomposing Cyclo-Octane.  The cyclo-octane conformation space has an interesting 
decomposition.  The local geometry of a self-intersection consists of a cylinder (top left) and a 
Mobius strip (top right), while the self-intersection is a ring traversing the middle of each object 
(shown in red).  Globally, cyclo-octane conformations can be separated into a sphere (bottom 
left) and a Klein bottle (bottom right). 
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Martin et al. [2010]
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1 Topological spaces

2 Simplicial complexes

3 Data structures
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Geometric simplices

A k-simplex σ is the convex hull of k + 1 points of Rd that are affinely
independent

σ = conv(p0, ..., pk) = {x ∈ Rd, x =

k∑

i=0

λi pi, λi ∈ [0, 1],

k∑

i=0

λi = 1}

k = dim(aff(σ)) is called the dimension of σ

1-simplex = line segment
2-simplex = triangle
3-simplex = tetrahedron
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Faces of a simplex

V(σ) = set of vertices of a k-simplex σ

∀V ′ ⊆ V(σ), conv(V ′) is a face of σ

a k-simplex has
(

k + 1
i + 1

)
faces of dimension i

total nb of faces =
∑d

i=0

(
k + 1
i + 1

)
= 2k+1 − 1
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Geometric simplicial complexes

A finite collection of simplices K called the faces of K such that

∀σ ∈ K, σ is a simplex
σ ∈ K, τ ⊂ σ ⇒ τ ∈ K

∀σ, τ ∈ K, either σ ∩ τ = ∅ or σ ∩ τ is a
common face of both
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Geometric simplicial complexes

The dimension of a simplicial complex K is the max dimension of its
simplices

A subset of K which is a complex is called a subcomplex of K

The underlying space |K| ⊂ Rd of K is the union of the simplices of K
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Example 1 : Triangulation of a finite point set of Rd

A simplicial d-complex K is pure if every simplex in K is the face of
a d-simplex.

A triangulation of a finite point set P ∈ Rd is a pure geometric
simplicial complex K s.t. vert(K) = P and |K| = conv(P).
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Example 2 : triangulation of a polygonal domain of R2

A triangulation of a polygonal domain Ω ⊂ R2 is a pure geometric
simplicial complex K s.t. vert(K) = vert(Ω) and |K| = Ω.

Basic facts

I Any bounded polygonal domain Ω ⊂ R2 admits a triangulation
I Such a triangulation can be computed in time O(n log n) where

n = ]vert(Ω)
I Some polyhedral domains of R3 do not admit a triangulation
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The Schönhardt polyhedron
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Example 3 : the boundary complex of the convex hull
of a finite set of points in general position

Polytope

conv(P) = {x ∈ Rd, x =
∑k

i=0 λi pi,

λi ∈ [0, 1],
∑k

i=0 λi = 1}

Supporting hyperplane H :
H ∩ P 6= ∅, P on one side of H

Faces : conv(P) ∩ H, H supp. hyp.

P is in general position iff no subset of k + 2 points lie in a k-flat

If P is in general position, all faces of conv(P) are simplices
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Abstract simplicial complexes

H. Poincaré (1854-1912)

Let V be a finite set. A simplicial (abstract) complex on V is a finite set
of subsets of V called the simplices or faces of K that satisfy :

1 The elements of V belong to K (vertices)

2 If τ ∈ K and σ ⊆ τ , then σ ∈ K

The dimension of a complex is the maximum dimension of its simplices
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Nerve of a finite cover U = {U1, ...,Un} of X
An example of an abstract simplicial complex

Computational Topology (Jeff Erickson) Examples of Cell Complexes

Corollary 15.1. For any points set P and radius �, the Aleksandrov-Čech complex AČ�(P) is homotopy-
equivalent to the union of balls of radius � centered at points in P.

Aleksandrov-Čech complexes and unions of balls for two different radii. 2-simplices are yellow; 3-simplices are green.

15.1.2 Vietoris-Rips Complexes: Flags and Shadows

The proximity graph N�(P) is the geometric graph whose vertices are the points P and whose edges join
all pairs of points at distance at most 2�; in other words, N�(P) is the 1-skeleton of the Aleksandrov-Čech
complex. The Vietoris-Rips complex VR�(P) is the flag complex or clique complex of the proximity
graph N�(P). A set of k+ 1 points in P defines a k-simplex in VR�(P) if and only if every pair defines an
edge in N�(P), or equivalently, if the set has diameter at most 2�. Again, the Vietoris-Rips complex is an
abstract simplicial complex.

The Vietoris-Rips complex was used by Leopold Vietoris [57] in the early days of homology theory as
a means of creating finite simplicial models of metric spaces.2 The complex was rediscovered by Eliayu
Rips in the 1980s and popularized by Mikhail Gromov [35] as a means of building simplicial models for
group actions. ‘Rips complexes’ are now a standard tool in geometric and combinatorial group theory.

The triangle inequality immediately implies the nesting relationship AČ�(P) ⊆ VR�(P) ⊆ AČ2�(P)
for any �, where ⊆ indicates containment as abstract simplicial complexes. The upper radius 2� can be
reduced to

�
3�/2 if the underlying metric space is Euclidean [21], but for arbitrary metric spaces, these

bounds cannot be improved.
One big advantage of Vietoris-Rips complexes is that they determined entirely by their underlying

proximity graphs; thus, they can be applied in contexts like sensor-network modeling where the
underlying metric is unknown. In contrast, the Aleksandrov-Čech complex also depends on the metric of
the ambient space that contains P; even if we assume that the underlying space is Euclidean, we need
the lengths of the edges of the proximity complex to reconstruct the Aleksandrov-Čech complex.

On the other hand, there is no result like the Nerve Lemma for flag complexes. Indeed, it is easy to
construct Vietoris-Rips complexes for points in the Euclidean plane that contain topological features of
arbitrarily high dimension.

2Vietoris actually defined a slightly different complex. Let U = {U1, U2, . . .} be a set of open sets that cover some topological
space X . The Vietoris complex of U is the abstract simplicial complex whose vertices are points in X , and whose simplices
are finite subsets of X that lie in some common set Ui . Thus, the Vietoris complex of an open cover is the dual of its
Aleskandrov-Čech nerve. Dowker [25] proved that these two simplicial complexes have isomorphic homology groups.

2

The nerve of U is the (abstract) simplicial complex K(U) defined by

σ = [Ui0 , ...,Uik ] ∈ K(U) ⇔ ∩k
i=1Uij 6= ∅
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The Delaunay complex

P a finite set of points of Rd

The Delaunay complex Del(P) of P is the nerve of Vor(P)

Cannot be realized in Rd if P is not in general position wrt spheres
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(Weighted) alpha-complex

The alpha-complex has the same homotopy type as the union of balls
25 / 43



Realization of an abstract simplicial complex

A realization of an abstract simplicial complex K is a geometric
simplicial complex Kg whose corresponding abstract simplicial
complex is isomorphic to K, i.e.

∃ bijective f : vert(K)→ vert(Kg) s.t. σ ∈ K ⇒ f (σ) ∈ Kg

Any abstract simplicial complex K can be realized in Rn

Hint : vi → pi = (0, ..., 0, 1, 0, ...0) ∈ Rn (n = ]vert(K))
σ = conv(p1, ..., pn) (canonical simplex)
Kg ⊆ σ

Realizations are not unique but are all topologically equivalent
(homeomorphic)
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Rips complex

σ ⊆ P ∈ R(P, α) ⇔ ∀p, q ∈ σ ‖p−q‖ ≤ α ⇔ B
(

p,
α

2

)
∩B
(

q,
α

2

)
6= ∅

64 ROBERT GHRIST

Figure 2. A fixed set of points [upper left] can be completed to a
Čech complex Cε [lower left] or to a Rips complex Rε [lower right]
based on a proximity parameter ε [upper right]. This Čech complex
has the homotopy type of the ε/2 cover (S1 ∨ S1 ∨ S1), while the
Rips complex has a wholly different homotopy type (S1 ∨ S2).

stored as a graph and reconstituted instead of storing the entire boundary operator
needed for a Čech complex. This virtue — that coarse proximity data on pairs of
nodes determines the Rips complex — is not without cost. The penalty for this
simplicity is that it is not immediately clear what is encoded in the homotopy type
of R. In general, it is neither a subcomplex of En nor does it necessarily behave
like an n-dimensional space at all (Figure 2).

1.4. Which ε? Converting a point cloud data set into a global complex (whether
Rips, Čech, or other) requires a choice of parameter ε. For ε sufficiently small,
the complex is a discrete set; for ε sufficiently large, the complex is a single high-
dimensional simplex. Is there an optimal choice for ε which best captures the
topology of the data set? Consider the point cloud data set and a sequence of Rips
complexes as illustrated in Figure 3. This point cloud is a sampling of points on
a planar annulus. Can this be deduced? From the figure, it certainly appears as
though an ideal choice of ε, if it exists, is rare: by the time ε is increased so as
to remove small holes from within the annulus, the large hole distinguishing the
annulus from the disk is filled in.

2. Algebraic topology for data

Algebraic topology offers a mature set of tools for counting and collating holes
and other topological features in spaces and maps between them. In the context of
high-dimensional data, algebraic topology works like a telescope, revealing objects
and features not visible to the naked eye. In what follows, we concentrate on ho-
mology for its balance between ease of computation and topological resolution. We
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Construction of the Rips complex

Interleaving : R(P, α) ⊆ C(P, α) ⊆ R(P, 2α)

Computing R(P, α) reduces to computing the graph G
(vertices+edges) of R(P, α) and the cliques of G

28 / 43



Triangulation of topological spaces

Triangulation of a topological space X

A simplicial complex homeomorphic to X

See the next lectures
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Combinatorial (PL) manifolds

Definition

A simplicial complex Ŝ is a PL manifold of dimension k iff the link of
each vertex is the triangulation of a topological sphere of dimension k

star (p)
link (p)

p

The underlying space of a PL manifold is a topological manifold
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1 Topological spaces

2 Simplicial complexes

3 Data structures
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Data structures to represent simplicial complexes

Atomic operations

Look-up/Insertion/Deletion of a simplex

Facets and subfaces of a simplex

Cofaces, link of a simplex

Topology preserving operations

I Edge contractions

I Elementary collapses

Explicit representation of all simplices ? of all incidence relations ?
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The Hasse diagram

G(V,E) σ ∈ V ⇔ σ ∈ K
(σ, τ) ∈ E ⇔ σ ⊂ τ ∧ dim(σ) = dim(τ)− 1

1

2

3

4

5

3 4 521

3 4 5 54 52 3

4 55 53

5

3

6 7 8 90

9897

9

86

7
9

0

1 1 2 2 2 3 3 4 6 6 7 7

21 32

432

43 7632 42

∅
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The simplex tree is a prefix tree (trie)

1 index the vertices of K
2 associate to each simplex σ ∈ K, the sorted list of its vertices
3 store the simplices in a trie.

1

2

3

4

5

3 4 521

3 4 5 54 52 3

4 55 53

5

3

3

3

3

6 7 8 90

9897

9

86

7
9

0
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Performance of the simplex tree

Explicit representation of all simplices
#nodes = #K
depth = dim(K) + 1
#children(σ) ≤ #cofaces(σ) ≤ deg(last(σ))

Memory complexity : O(1) per simplex

Basic operations

I Membership (σ) : O(dσ log n)
I Insertion (σ) : O(2dσdσ log n)

4.1 Memory Performance of the Simplex Tree 15

Data |P| D d r k Tg |E| TRips |K| Ttot Ttot/|K|
Bud 49,990 3 2 0.11 3 1.5 1,275,930 104.5 354,695,000 104.6 3.0 · 10�7

Bro 15,000 25 ? 0.019 25 0.6 3083 36.5 116,743,000 37.1 3.2 · 10�7

Cy8 6,040 24 2 0.4 24 0.11 76,657 4.5 13,379,500 4.61 3.4 · 10�7

Kl 90,000 5 2 0.075 5 0.46 1,120,000 68.1 233,557,000 68.5 2.9 · 10�7

S4 50,000 5 4 0.28 5 2.2 1,422,490 95.1 275,126,000 97.3 3.6 · 10�7

Data |L| |W | D d ⇢ k Tnn TWit⇢ |K| Ttot Ttot/|K|
Bud 10,000 49,990 3 2 0.12 3 1. 729.6 125,669,000 730.6 12 · 10�3

Bro 3,000 15,000 25 ? 0.01 25 9.9 107.6 2,589,860 117.5 6.5 · 10�3

Cy8 800 6,040 24 2 0.23 24 0.38 161 997,344 161.2 23 · 10�3

Kl 10,000 90,000 5 2 0.11 5 2.2 572 109,094,000 574.2 5.7 · 10�3

S4 50,000 200,000 5 4 0.06 5 25.1 296.7 163,455,000 321.8 1.2 · 10�3

Figure 8: Data, timings (in s.) and statistics for the construction of Rips complexes (TOP) and
relaxed witness complexes (BOTTOM).

We use a variety of both real and synthetic datasets. Bud is a set of points sampled from the
surface of the Stanford Buddha in R3. Bro is a set of 5 ⇥ 5 high-contrast patches derived from
natural images, interpreted as vectors in R25, from the Brown database (with parameter k = 300
and cut 30%) [12, 6]. Cy8 is a set of points in R24, sampled from the space of conformations
of the cyclo-octane molecule [14], which is the union of two intersecting surfaces. Kl is a set of
points sampled from the surface of the figure eight Klein Bottle embedded in R5. Finally S4 is
a set of points uniformly distributed on the unit 4-sphere in R5. Datasets are listed in Figure 8
with details on the sets of points P or landmarks L and witnesses W , their size |P| or |L| and
|W |, the ambient dimension D, the intrinsic dimension d of the object the sample points belong
to (if known), the parameter r or ⇢, the dimension k up to which we construct the complexes, the
time Tg to construct the Rips graph or the time Tnn to compute the lists of nearest neighbors of
the witnesses, the number of edges |E|, the time for the construction of the Rips complex TRips
or for the construction of the witness complex TWit⇢ , the size of the complex |K|, and the total
construction time Ttot and average construction time per face Ttot/|K|.
We test the performance of our algorithms on these datasets, and compare them to the JPlex
library [16] which is a Java software package which can be used with Matlab. JPlex is widely
used to construct simplicial complexes and to compute their homology. We also provide an exper-
imental analysis of the memory performance of our data structure compared to other representa-
tions. Unless mentioned otherwise, all simplicial complexes are computed up to the embedding
dimension, because the homology is trivial in dimenson higher than the ambient dimension. All
timings are averaged over 10 independent runs. Due to the lack of space, we cannot report on
the performance of each algorithm on each dataset but the results presented are a faithful sample
of what we have observed on other datasets.

As illustrated in Figure 8, we are able to construct and represent both Rips and relaxed witness
complexes of up to several hundred million faces in high dimensions, on all datasets.

4.1 Memory Performance of the Simplex Tree

In order to represent the combinatorial structure of an arbitrary simplicial complex, one needs
to mark all maximal faces. Indeed, from the definition of a simplicial complex, we cannot infer
the higher dimensional faces from the lower dimensional ones. Moreover, the number of maximal
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Implemented in the GUDHI library
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Redundancy in the Simplex Tree

Simplex Automaton
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Minimal simplex automaton B., Karthik, Tavenas 2016

Minimal Simplex Automaton

1 2

3

4

5,6
3

4

5,6

3

4

5

4 4

5,6 5

Hopcroft’s Algorithm: O(m log m log n) time.

7

Compression time : O(m log m log n) [Hopcroft 1971]

Static queries : unchanged
Dynamic queries : more complex

The size of the automaton depends on the labelling of the vertices

Finding a minimal automaton is NP-complete
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Experiments

Data Set 1 : Rips Complex from sampling of Klein bottle in R5.

n α d k m
Size After

Compression
Compression

Ratio
10,000 0.15 10 24,970 604,573 218,452 2.77
10,000 0.16 13 25,410 1,387,023 292,974 4.73
10,000 0.17 15 27,086 3,543,583 400,426 8.85
10,000 0.18 17 27,286 10,508,486 524,730 20.03

Data Set 2 : Flag complexes generated from random graph Gn,p.

n p d k m
Size After

Compression
Compression

Ratio
25 0.8 17 77 315,370 467 537.3
30 0.75 18 83 4,438,559 627 7,079.0
35 0.7 17 181 3,841,591 779 4,931.4
40 0.6 19 204 9,471,220 896 10,570.6
50 0.5 20 306 25,784,504 1,163 22,170.7
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Experiments

Data Set 1 : Rips Complex from sampling of Klein bottle in R5.

n α d k m
Size After

Compression
Compression

Ratio
10,000 0.15 10 24,970 604,573 218,452 2.77
10,000 0.16 13 25,410 1,387,023 292,974 4.73
10,000 0.17 15 27,086 3,543,583 400,426 8.85
10,000 0.18 17 27,286 10,508,486 524,730 20.03
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Simplex Array List [B., Karthik C.S., Tavenas 2017]

Store only the maximal simplices

2 La structure SAL

SAL est la structure de référence pour stocker un complexe simplicial. On
donne une nouvelle manière de définir SAL, que nous estimons plus facile à com-
prendre car elle sépare clairement le stockage de l’information qui caractérise le
complexe simplicial et la structure additionnelle qui est maintenue pour accéder
rapidement à cette information. L’information qui caractérise le complexe, c’est
son ensemble de simplexes maximaux K, qui est stocké dans une table de ha-
chage MS, où chaque simplexe est associé à la somme des clés de ses sommets.
Une telle table de hachage permet seulement de tester facilement l’apparte-
nance d’un simplexe au complexe en tant que simplexe maximal, or en pratique
on veut pouvoir tester l’appartenance de n’importe quel simplex. On a donc
besoin d’une structure supplémentaire, qui permet d’accéder rapidement à MS,
une table de hachage T0 qui associe à chaque sommet un ensemble de pointeurs
vers les emplacements dans MS des cofaces maximales du sommet.

1

4

2

3

6

Associative array T0 associating each 
vertex to its doubly linked list. Set MS of the maximal simplices.

6 3 4 2

2

3 6 1

1

Figure 2 – La structure SAL avec n � 6, d = 4, k = 3 et les simplexes
maximaux : �A = {2346}, �B = {12} et �C = {136}

Complexité en mémoire :

O
� X

�2K

d�
�

= O(kd)

Un simplexe � occupe O(d�) mémoire, donc au total MS prend O
�P

�2K d�
�

mémoire. Ensuite, il faut remarquer qu’il y a d� références depuis T0 vers l’em-
placement d’un simplex maximal � dans MS, une pour chacun de ses sommets,
donc au total il y a O

�P
�2K d�

�
références dans T0, donc T0 occupe lui aussi

O
�P

�2K d�
�
.

4

Memory storage : O
(∑

σ∈K dσ
)

= O(kd) Optimal
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Proof of optimality
Theorem

Consider the class of all simplicial complexes K(n, k, d) where d ≥ 2 and
k ≥ n + 1.

Any data structure that can represent the simplicial complexes of this class
requires log

(( n/2
d+1)
k−n

)
bits to be stored,

which is Ω(kd log n) for any constant ε ∈ (0, 1) and for 2
εn ≤ k ≤ n(1−ε)d and

d ≤ nε/3.

Proof P = |vert(K)|, P ′ ⊂ P, |P ′| = n/2

Consider the set S of all simplicial complexes with vertex set ⊂ P ′, of dimension d and

having k − n maximal simplices (all of dimension d) and observe that |S| =
(( n/2

d+1)
k−n

)
Let K1, ...,K|S| be those complexes with vertex sets P1, ...,P|S|
Complete each Ki with vertices in P \ Pi and edges spanning those vertices so that
K+

i has n vertices and k maximal simplices (of dimension 1 or h)

We have |S| complexes of K(n, k, d,m)
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Basic operations
Complexity depends on a local parameter

2 La structure SAL

SAL est la structure de référence pour stocker un complexe simplicial. On
donne une nouvelle manière de définir SAL, que nous estimons plus facile à com-
prendre car elle sépare clairement le stockage de l’information qui caractérise le
complexe simplicial et la structure additionnelle qui est maintenue pour accéder
rapidement à cette information. L’information qui caractérise le complexe, c’est
son ensemble de simplexes maximaux K, qui est stocké dans une table de ha-
chage MS, où chaque simplexe est associé à la somme des clés de ses sommets.
Une telle table de hachage permet seulement de tester facilement l’apparte-
nance d’un simplexe au complexe en tant que simplexe maximal, or en pratique
on veut pouvoir tester l’appartenance de n’importe quel simplex. On a donc
besoin d’une structure supplémentaire, qui permet d’accéder rapidement à MS,
une table de hachage T0 qui associe à chaque sommet un ensemble de pointeurs
vers les emplacements dans MS des cofaces maximales du sommet.

1

4

2

3

6

Associative array T0 associating each 
vertex to its doubly linked list. Set MS of the maximal simplices.

6 3 4 2

2

3 6 1

1

Figure 2 – La structure SAL avec n � 6, d = 4, k = 3 et les simplexes
maximaux : �A = {2346}, �B = {12} et �C = {136}

Complexité en mémoire :

O
� X

�2K

d�
�

= O(kd)

Un simplexe � occupe O(d�) mémoire, donc au total MS prend O
�P

�2K d�
�

mémoire. Ensuite, il faut remarquer qu’il y a d� références depuis T0 vers l’em-
placement d’un simplex maximal � dans MS, une pour chacun de ses sommets,
donc au total il y a O

�P
�2K d�

�
références dans T0, donc T0 occupe lui aussi

O
�P

�2K d�
�
.

4

Γi(σ) = number of maximal cofaces of σ of dimension i

Γi = maxσ∈K Γi(σ)

Membership (σ) : O
(∑dσ−1

i=0 Γi(σ)
)

= O(Γ0d log n) ST : O(d log n)

Insertion (σ) : O(Γ0(σ)d2
σ log n) = O(Γ0d2) ST : O(dσ2dσ log n)
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Experimental results
Data Set 1 (Rips complex on a Klein bottle in R5)

No n α d k m Γ0 Γ1 Γ2 Γ3 |SAL|
1 10,000 0.15 10 24,970 604,573 62 53 47 37 424,440
2 10,000 0.16 13 25,410 1,387,023 71 61 55 48 623,238
3 10,000 0.17 15 27,086 3,543,583 90 67 61 51 968,766
4 10,000 0.18 17 27,286 10,508,486 115 91 68 54 1,412,310

To be released in the GUDHI library (F. Godi)
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Conclusions

Next lectures

Other types of simplicial complexes
Triangulation of manifolds

Open questions

Bound on Γ0 for interesting simplicial complexes
Lower bounds on query time assuming optimal storage O(kd log n)
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