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Delaunay triangulation of manifolds

@ Delaunay triangulations in Euclidean and Laguerre geometry
@ Good triangulations and meshes

© Triangulation of topological spaces

@ Shape reconstruction

© Delaunay triangulation of manifolds
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0 Topological spaces
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Topological spaces

A topology on a set X is a family O of subsets of X that satisfies the
three following conditions :

@ the empty set () and X are elements of O,
© any union of elements of O is an element of O,
© any finite intersection of elements of O is an element of O.

The set X together with the family O, whose elements are called open
sets, is a topological space.



Continuous mappings between topological spaces

Homeomorphism

Homeomorphism

f: X — Y is a bijective mapping that is
continuous and has a continuous inverse

X=~Y

Embedding

If f:X — Yisahomeomorphism onto its image, f is called an
embedding of X into Y
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Are these objects homeomorphic ?
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Are these objects homeomorphic ?
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Continuous mappings between topological spaces
Homotopy

Two continuous mappings fo, fi : X — Y are homotopic
if there exists a continuous mapping %2:[0,1] x X — Y s.t.

Vx e X, h(0,x)=fo(x) et h(l,x)=fi(x)
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Continuous mappings between topological spaces
Homotopy

Two continuous mappings fo, fi : X — Y are homotopic
if there exists a continuous mapping %2:[0,1] x X — Y s.t.

Vx e X, h(0,x)=fo(x) et h(l,x)=fi(x)

Deformation retract : f : X — Y C X is a deformation retract if f is
homotopic to the identity
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Continuous mappings between topological spaces

Homotopy equivalence

homotopy equiv.

not humo%py equiv.

o o Q
_

X and Y have the same homotopy type (X ~ Y) if there exists two
continuous mappings f: X —Y and g:Y —>X s.t.

fog is homotopic to the identity mapping in Y
gof is homotopic to the identity mapping in X
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Continuous mappings between topological spaces

Homotopy equivalence

homotopy equiv.

not homo%py equiv.

o o Q
_

X and Y have the same homotopy type (X ~ Y) if there exists two
continuous mappings f: X —Y and g:Y —>X s.t.

fog is homotopic to the identity mapping in Y
gof is homotopic to the identity mapping in X

X is contractible if it has the same homotopy type as a point
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Curves, surfaces and manifolds
Charts, atlases and transition maps

Manifold : X is a manifold without boundary of dimension k if any x € X has a
neighborhood that is homeomorphic to an open ball of dimension k of R¥

Chart : ¢; homeomorphism
Transition map : ¢;; mapping between charts

Example : Configuration spaces of mechanisms
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Intrinsic dimension and embedding

Whitney’s embedding theorem

Any manifold of dimension k can be embedded in R%*+!

Some surfaces like the Klein bottle
cannot be embedded in R3
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The configuration space of cyclo-octane CsHi¢

Stratified manifolds
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9 Simplicial complexes
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Geometric simplices

A k-simplex o is the convex hull of k 4 1 points of R? that are affinely
independent

k

k
g = COHV(PO, ~--7Pk) = {X € ]Rda X = Z )‘i Pi, )‘i € [Oa 1]7 Z)‘l = 1}
i=0 i=0

k = dim(aff(o)) is called the dimension of o
1-simplex = line segment

2-simplex = triangle / A
3-simplex = tetrahedron
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Faces of a simplex

VAN

V(o) = set of vertices of a k-simplex o

VvV C V(o), conv(V') is a face of o

a k-simplex has ( I:j:ll ) faces of dimension i

total nb of faces = 3¢, ( lz(j—_ll ) =2kl
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Geometric simplicial complexes

A finite collection of simplices K called the faces of K such that

<
@ Vo € K, o is a simplex 4
QoccK, TCo=717€KkK

@ Vo,7 € K,eithercnrt=0oronNrisa ’4\’

common face of both Q’
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Geometric simplicial complexes

The dimension of a simplicial complex K is the max dimension of its
simplices

A subset of K which is a complex is called a subcomplex of K

The underlying space |K| c R? of K is the union of the simplices of K
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Example 1 : Triangulation of a finite point set of R¢

@ A simplicial d-complex K is pure if every simplex in K is the face of
a d-simplex.
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Example 1 : Triangulation of a finite point set of R¢

@ A simplicial d-complex K is pure if every simplex in K is the face of
a d-simplex.

@ A triangulation of a finite point set P € R is a pure geometric
simplicial complex K s.t. vert(K) =P and |K| = conv(P).
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Example 2 : triangulation of a polygonal domain of R?

A triangulation of a polygonal domain © c R? is a pure geometric
simplicial complex K s.t.  vert(K) = vert(2) and |K|=Q.
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Example 2 : triangulation of a polygonal domain of R?

i\

A triangulation of a polygonal domain © c R? is a pure geometric
simplicial complex K s.t.  vert(K) = vert(2) and |K|=Q.

Basic facts

» Any bounded polygonal domain 2 ¢ R? admits a triangulation

» Such a triangulation can be computed in time O(nlogn) where
n = fvert(Q2)

» Some polyhedral domains of R? do not admit a triangulation
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The Schénhardt polyhedron
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Example 3 : the boundary complex of the convex hull
of a finite set of points in general position

Polytope
conv(P) = {x e RY, x =S \ipi,

1

Ai € [0, 1], Zf:o A= 1}

Supporting hyperplane H :
HNP#(, Ponone side of H

Faces : conv(P) N H, H supp. hyp.
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Example 3 : the boundary complex of the convex hull
of a finite set of points in general position

Polytope
conv(P) = {x € R, x = Z?:o Ai Pi

Ai € [0, 1], Zf:o A= 1}

Supporting hyperplane H :
HNP#(, Ponone side of H

Faces : conv(P) N H, H supp. hyp.

@ P is in general position iff no subset of k + 2 points lie in a k-flat
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Example 3 : the boundary complex of the convex hull
of a finite set of points in general position

Polytope

conv(P) = {x e RY, x =S \ipi,
Ai € 10,1, Zf:o Ai =1}

Supporting hyperplane H :
HNP#(, Ponone side of H

Faces : conv(P) N H, H supp. hyp.

@ P is in general position iff no subset of k + 2 points lie in a k-flat

@ If Pis in general position, all faces of conv(P) are simplices
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Abstract simplicial complexes

A g
o7

H. Poincaré (1854-1912)

Let V be a finite set. A simplicial (abstract) complex on V is a finite set
of subsets of V called the simplices or faces of K that satisfy :

@ The elements of V belong to K (vertices)
Q@ IlfreKando C 7, theno €K

The dimension of a complex is the maximum dimension of its simplices
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Nerve of a finite cover Y = {Uy, ..., U,} of X

An example of an abstract simplicial complex

The nerve of U is the (abstract) simplicial complex K(U) defined by

0= [Uim ey Uik] € K(U) g mi'(:lUij 7& @
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The Delaunay complex

P a finite set of points of R?

@ The Delaunay complex Del(P) of P is the nerve of Vor(P)
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The Delaunay complex

P a finite set of points of R?

@ The Delaunay complex Del(P) of P is the nerve of Vor(P)

@ Cannot be realized in R? if P is not in general position wrt spheres
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(Weighted) alpha-complex

The alpha-complex has the same homotopy type as the union of balls
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Realization of an abstract simplicial complex

@ A realization of an abstract simplicial complex K is a geometric
simplicial complex K, whose corresponding abstract simplicial
complex is isomorphic to K, i.e.

d bijective f : vert(K) — vert(K,) st. 0 € K = f(o) €K,

@ Any abstract simplicial complex K can be realized in R”

Hint :v; — p; = (0,...,0,1,0,...0) € R" (n = gvert(K))
o =conv(py,...,pn) (canonical simplex)
K, Co

@ Realizations are not unique but are all topologically equivalent
(homeomorphic)
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Rips complex
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Construction of the Rips complex

@ Interleaving : R(P,a) C C(P,a) C R(P,2c)

@ Computing R(P, «) reduces to computing the graph G
(vertices+edges) of R(P, «) and the cliques of G
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Triangulation of topological spaces

Triangulation of a topological space X

A simplicial complex homeomorphic to X

See the next lectures
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Combinatorial (PL) manifolds
Definition

A simplicial complex S is a PL manifold of dimension & iff the link of
each vertex is the triangulation of a topological sphere of dimension k

- link (p)

NN

/-

The underlying space of a PL manifold is a topological manifold
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e Data structures

31/43



Data structures to represent simplicial complexes

Atomic operations

@ Look-up/Insertion/Deletion of a simplex

@ Facets and subfaces of a simplex

@ Cofaces, link of a simplex

@ Topology preserving operations

» Edge contractions

» Elementary collapses

Explicit representation of all simplices ? of all incidence relations ?
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The Hasse diagram

G(V,E) o€V & o€k
(0,7)€EE & oCT1 A dim(o)=dim(7)—1

12 13 2B A D H 3B 45
123 28423% U M5
245
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The simplex tree is a prefix tree (irie)

@ index the vertices of K
© associate to each simplex o € K, the sorted list of its vertices
© store the simplices in a trie.

15 QM 0
: ®

S N A O A
23 BOEG) OB B [0
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Performance of the simplex tree

@ Explicit representation of all simplices
@ #nodes = #K
@ depth = dim(K) + 1
@ #children(o) < #cofaces(oc) < deg(last(o))
@ Memory complexity : O(1) per simplex
@ Basic operations
» Membership (o) :  O(d,logn)
» Insertion (o) : 0(2%d, logn)
Data| [P| D d r k Ty IE] TRips Kl Tiot  Tiot/IKI
Bud [49990 3 2 011 3 1.5 1,275,930 104.5 354,695,000 104.6 3.0-10~"
Bro | 15,000 25 ? 0.019 25 0.6 3083 36.5 116,743,000 37.1 3.2-1077
Cy8 | 6,040 24 2 0.4 24 0.11 76,657 4.5 13,379,500 4.61 3.4-1077
K1 90,000 5 2 0.075 5 0.46 1,120,000 68.1 233,557,000 68.5 2.9-1077
S4 50,000 5 4 028 5 22 1422490 95.1 275,126,000 97.3 3.6-1077

Implemented in the GUDHI library

35/43



Redundancy in the Simplex Tree
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Minimal simplex automaton B., Karthik, Tavenas 2016

@ Compression time : O(mlogmlogn) [Hopcroft 1971]
@ Static queries : unchanged
@ Dynamic queries : more complex
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Minimal simplex automaton B., Karthik, Tavenas 2016

@ Compression time : O(mlogmlogn) [Hopcroft 1971]
@ Static queries : unchanged

@ Dynamic queries : more complex

@ The size of the automaton depends on the labelling of the vertices

Finding a minimal automaton is NP-complete
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Experiments

Data Set 1 : Rips Complex from sampling of Klein bottle in R>.

Size After

Compression

n « d k m A
Compression Ratio
10,000 | 0.15 | 10 | 24,970 604,573 218,452 2.77
10,000 | 0.16 | 13 | 25,410 | 1,387,023 292,974 4.73
10,000 | 0.17 | 15 | 27,086 | 3,543,583 400,426 8.85
10,000 | 0.18 | 17 | 27,286 | 10,508,486 524,730 20.03
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Experiments

Data Set 1 : Rips Complex from sampling of Klein bottle in R>.

n o d X m Size Aftgr Compression
Compression Ratio
10,000 | 0.15 | 10 | 24,970 604,573 218,452 2.77
10,000 | 0.16 | 13 | 25,410 | 1,387,023 292,974 4.73
10,000 | 0.17 | 15 | 27,086 | 3,543,583 400,426 8.85
10,000 | 0.18 | 17 | 27,286 | 10,508,486 524,730 20.03

Data Set 2 :

Flag complexes generated from random graph G, .

" d & m Size Afte.r Compre;sion
Compression Ratio
25| 08 |17 | 77 315,370 467 537.3
30 |0.75| 18 | 83 | 4,438,559 627 7,079.0
35| 0.7 |17 | 181 | 3,841,591 779 4,931.4
40 | 0.6 | 19 | 204 | 9,471,220 896 10,570.6
50 | 0.5 | 20 | 306 | 25,784,504 1,163 22,170.7
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Simplex Array List [B., Karthik C.S., Tavenas 2017]
Store only the maximal simplices

Jr EIBIEE]

St coding for 70

e

Set coding for o

> (3)6]1]

Associative array TO associating each

vertex to its doubly linked list. Set MS of the maximal simplices.

Memory storage : O (3 cx do) = O(kd) Optimal
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Proof of optimality

Theorem

Consider the class of all simplicial complexes K(n, k, d) where d > 2 and
k>n-—+1.

Any data structure that can represent the simplicial complexes of this class
requires log ((M)) bits to be stored,

which is Q(kd log n) for any constant ¢ € (0, 1) and for 2n < k < n!=*) and
d < ne/3.

Proof P = |vert(K)|, P’ C P, |P'| =n/2

Consider the set S of all simplicial complexes with vertex set C P’, of dimension d and
1/

having k — n maximal simplices (all of dimension d) and observe that |S| = ((d+1))

Let K1, ..., K|5| be those complexes with vertex sets Py, ..., Py

Complete each K; with vertices in P \ P; and edges spanning those vertices so that
K;" has n vertices and k maximal simplices (of dimension 1 or &)

We have |S| complexes of K(n, k,d, m)
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Basic operations

Complexity depends on a local parameter

\
= Fl G|

Associ at e array TO associ at ng each
Vertex to its doubly linked lis Set MS of the maximal simplices.

I';(o) = number of maximal cofaces of o of dimension i

I'i = max, ek I'i(0)
Membership (o) : O (2?;0—1 Fi(a)) = O(Todlogn) ST :0(dlogn)

Insertion (o) :  O(To(0)d2logn) = O(Tod?) ST : 0(d,2% logn)
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Experimental results
Data Set 1 (Rips complex on a Klein bottle in R?)

No n « d k m Ty Iy [Ty | T |SAL|

1 {10,000 | 0.15 | 10 | 24,970 604,573 62 | 53 | 47 | 37 | 424,440
2 | 10,000 | 0.16 | 13 | 25,410 | 1,387,023 | 71 | 61 | 55 | 48 | 623,238
3 [ 10,000 | 0.17 | 15| 27,086 | 3,543,583 | 90 | 67 | 61 | 51 | 968,766
4 | 10,000 | 0.18 | 17 | 27,286 | 10,508,486 | 115 | 91 | 68 | 54 | 1,412,310

To be released in the GUDHI library (F. Godi)
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Conclusions

Next lectures

@ Other types of simplicial complexes
@ Triangulation of manifolds

Open questions

@ Bound on Iy for interesting simplicial complexes
@ Lower bounds on query time assuming optimal storage O(kd logn)
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