#### Delaunay triangulation of manifolds

3. Triangulation of topological spaces

Jean-Daniel Boissonnat

Winter School on Computational Geometry Tehran Polytechnic February 28 - March 5, 2018

## Delaunay triangulation of manifolds

- Delaunay triangulations in Euclidean and Laguerre geometry
- 2 Good triangulations and meshes
- Triangulation of topological spaces
- Shape reconstruction
- Oelaunay triangulation of manifolds







A topology on a set *X* is a family  $\mathcal{O}$  of subsets of *X* that satisfies the three following conditions :

- the empty set  $\emptyset$  and X are elements of  $\mathcal{O}$ ,
- **2** any union of elements of  $\mathcal{O}$  is an element of  $\mathcal{O}$ ,
- **(3)** any finite intersection of elements of  $\mathcal{O}$  is an element of  $\mathcal{O}$ .

The set *X* together with the family O, whose elements are called open sets, is a topological space.

#### Homeomorphism

 $f: X \to Y$  is a bijective mapping that is continuous and has a continuous inverse

 $X \approx Y$ 



#### Embedding

If  $f: X \to Y$  is a homeomorphism onto its image, f is called an embedding of X into Y

## Are these objects homeomorphic?





## Are these objects homeomorphic?



Two continuous mappings  $f_0$ ,  $f_1 : X \to Y$  are homotopic if there exists a continuous mapping  $h : [0, 1] \times X \to Y$  s.t.

$$\forall x \in X, h(0,x) = f_0(x) \text{ et } h(1,x) = f_1(x)$$



**Deformation retract** :  $f : X \to Y \subseteq X$  is a deformation retract if f is homotopic to the identity

Two continuous mappings  $f_0$ ,  $f_1 : X \to Y$  are homotopic if there exists a continuous mapping  $h : [0, 1] \times X \to Y$  s.t.

$$\forall x \in X, h(0,x) = f_0(x) \text{ et } h(1,x) = f_1(x)$$



**Deformation retract** :  $f : X \to Y \subseteq X$  is a deformation retract if f is homotopic to the identity

#### Homotopy equivalence



*X* and *Y* have the same homotopy type ( $X \simeq Y$ ) if there exists two continuous mappings  $f: X \to Y$  and  $g: Y \to X$  s.t.

 $f \circ g$  is homotopic to the identity mapping in *Y* 

 $g \circ f$  is homotopic to the identity mapping in X

*X* is contractible if it has the same homotopy type as a point

#### Homotopy equivalence



*X* and *Y* have the same homotopy type ( $X \simeq Y$ ) if there exists two continuous mappings  $f: X \to Y$  and  $g: Y \to X$  s.t.

 $f \circ g$  is homotopic to the identity mapping in *Y* 

 $g \circ f$  is homotopic to the identity mapping in X

*X* is contractible if it has the same homotopy type as a point

## Curves, surfaces and manifolds

Charts, atlases and transition maps





Manifold : *X* is a manifold without boundary of dimension *k* if any  $x \in X$  has a neighborhood that is homeomorphic to an open ball of dimension *k* of  $\mathbb{R}^k$ 

Chart :  $\phi_i$  homeomorphism

Transition map :  $\phi_{ij}$  mapping between charts

Example : Configuration spaces of mechanisms

## Intrinsic dimension and embedding

#### Whitney's embedding theorem

Any manifold of dimension k can be embedded in  $\mathbb{R}^{2k+1}$ 

Some surfaces like the Klein bottle cannot be embedded in  $\mathbb{R}^3$ 









#### The configuration space of cyclo-octane $C_8H_{16}$ Stratified manifolds



Martin et al. [2010]







## **Geometric simplices**

A *k*-simplex  $\sigma$  is the convex hull of k + 1 points of  $\mathbb{R}^d$  that are affinely independent

$$\sigma = \operatorname{conv}(p_0, ..., p_k) = \{ x \in \mathbb{R}^d, \ x = \sum_{i=0}^k \ \lambda_i \ p_i, \ \lambda_i \in [0, 1], \ \sum_{i=0}^k \lambda_i = 1 \}$$

 $k = \dim(\operatorname{aff}(\sigma))$  is called the dimension of  $\sigma$ 



#### Faces of a simplex



 $V(\sigma) =$  set of vertices of a *k*-simplex  $\sigma$ 

 $\forall V' \subseteq V(\sigma), \operatorname{conv}(V') \text{ is a face of } \sigma$ 

a 
$$k$$
-simplex has  $\left( egin{array}{c} k+1 \ i+1 \end{array} 
ight)$  faces of dimension  $i$ 

total nb of faces 
$$=\sum_{i=0}^d \left(egin{array}{c} k+1\ i+1 \end{array}
ight)=2^{k+1}-1$$

## Geometric simplicial complexes

A finite collection of simplices *K* called the faces of *K* such that

- $\forall \sigma \in K, \sigma \text{ is a simplex}$
- $\sigma \in K, \tau \subset \sigma \Rightarrow \tau \in K$
- ∀σ, τ ∈ K, either σ ∩ τ = Ø or σ ∩ τ is a common face of both







The dimension of a simplicial complex *K* is the max dimension of its simplices

A subset of *K* which is a complex is called a subcomplex of *K* 

The underlying space  $|K| \subset \mathbb{R}^d$  of *K* is the union of the simplices of *K* 

## Example 1 : Triangulation of a finite point set of $\mathbb{R}^d$



- A simplicial *d*-complex *K* is pure if every simplex in *K* is the face of a *d*-simplex.
- A triangulation of a finite point set *P* ∈ ℝ<sup>d</sup> is a pure geometric simplicial complex *K* s.t. vert(*K*) = *P* and |*K*| = conv(*P*).

## Example 1 : Triangulation of a finite point set of $\mathbb{R}^d$



- A simplicial *d*-complex *K* is pure if every simplex in *K* is the face of a *d*-simplex.
- A triangulation of a finite point set *P* ∈ ℝ<sup>d</sup> is a pure geometric simplicial complex *K* s.t. vert(*K*) = *P* and |*K*| = conv(*P*).

## Example 2 : triangulation of a polygonal domain of $\mathbb{R}^2$



A triangulation of a polygonal domain  $\Omega \subset \mathbb{R}^2$  is a pure geometric simplicial complex *K* s.t.  $vert(K) = vert(\Omega)$  and  $|K| = \Omega$ .

Basic facts

- Any bounded polygonal domain  $\Omega \subset \mathbb{R}^2$  admits a triangulation
- Such a triangulation can be computed in time O(n log n) where n = \$vert(Ω)
- ▶ Some polyhedral domains of ℝ<sup>3</sup> do not admit a triangulation

## Example 2 : triangulation of a polygonal domain of $\mathbb{R}^2$



A triangulation of a polygonal domain  $\Omega \subset \mathbb{R}^2$  is a pure geometric simplicial complex *K* s.t.  $vert(K) = vert(\Omega)$  and  $|K| = \Omega$ .

**Basic facts** 

- Any bounded polygonal domain  $\Omega \subset \mathbb{R}^2$  admits a triangulation
- Such a triangulation can be computed in time  $O(n \log n)$  where  $n = \sharp \operatorname{vert}(\Omega)$
- ▶ Some polyhedral domains of ℝ<sup>3</sup> do not admit a triangulation

## The Schönhardt polyhedron



# Example 3 : the boundary complex of the convex hull of a finite set of points in general position



#### Polytope

$$\operatorname{conv}(\mathcal{P}) = \{ x \in \mathbb{R}^d, \ x = \sum_{i=0}^k \lambda_i \ p_i, \\ \lambda_i \in [0, 1], \ \sum_{i=0}^k \lambda_i = 1 \}$$

Supporting hyperplane *H* :  $H \cap \mathcal{P} \neq \emptyset$ ,  $\mathcal{P}$  on one side of *H* 

Faces :  $conv(\mathcal{P}) \cap H$ , *H* supp. hyp.

•  $\mathcal{P}$  is in general position iff no subset of k + 2 points lie in a k-flat

• If *P* is in general position, all faces of  $conv(\mathcal{P})$  are simplices

# Example 3 : the boundary complex of the convex hull of a finite set of points in general position



#### Polytope

$$\operatorname{conv}(\mathcal{P}) = \{ x \in \mathbb{R}^d, \ x = \sum_{i=0}^k \lambda_i \ p_i, \\ \lambda_i \in [0, 1], \ \sum_{i=0}^k \lambda_i = 1 \}$$

Supporting hyperplane *H* :  $H \cap \mathcal{P} \neq \emptyset$ ,  $\mathcal{P}$  on one side of *H* 

Faces :  $conv(\mathcal{P}) \cap H$ , *H* supp. hyp.

•  $\mathcal{P}$  is in general position iff no subset of k + 2 points lie in a k-flat

• If *P* is in general position, all faces of  $conv(\mathcal{P})$  are simplices

# Example 3 : the boundary complex of the convex hull of a finite set of points in general position



#### Polytope

$$\operatorname{conv}(\mathcal{P}) = \{ x \in \mathbb{R}^d, \ x = \sum_{i=0}^k \lambda_i \ p_i, \\ \lambda_i \in [0, 1], \ \sum_{i=0}^k \lambda_i = 1 \}$$

Supporting hyperplane *H* :  $H \cap \mathcal{P} \neq \emptyset$ ,  $\mathcal{P}$  on one side of *H* 

Faces :  $conv(\mathcal{P}) \cap H$ , *H* supp. hyp.

- $\mathcal{P}$  is in general position iff no subset of k + 2 points lie in a k-flat
- If *P* is in general position, all faces of  $conv(\mathcal{P})$  are simplices

#### Abstract simplicial complexes





H. Poincaré (1854-1912)

Let V be a finite set. A simplicial (abstract) complex on V is a finite set of subsets of V called the simplices or faces of K that satisfy :

2) If 
$$au \in K$$
 and  $\sigma \subseteq au$ , then  $\sigma \in K$ 

The dimension of a complex is the maximum dimension of its simplices

#### Nerve of a finite cover $\mathcal{U} = \{U_1, ..., U_n\}$ of *X*

An example of an abstract simplicial complex



The nerve of  $\mathcal{U}$  is the (abstract) simplicial complex K(U) defined by

$$\sigma = [U_{i_0}, ..., U_{i_k}] \in K(U) \quad \Leftrightarrow \quad \cap_{i=1}^k U_{i_j} \neq \emptyset$$

## The Delaunay complex



- The Delaunay complex  $Del(\mathcal{P})$  of  $\mathcal{P}$  is the nerve of  $Vor(\mathcal{P})$
- Cannot be realized in  $\mathbb{R}^d$  if  $\mathcal{P}$  is not in general position wrt spheres

## The Delaunay complex



- The Delaunay complex  $Del(\mathcal{P})$  of  $\mathcal{P}$  is the nerve of  $Vor(\mathcal{P})$
- Cannot be realized in  $\mathbb{R}^d$  if  $\mathcal{P}$  is not in general position wrt spheres

## (Weighted) alpha-complex



The alpha-complex has the same homotopy type as the union of balls

#### Realization of an abstract simplicial complex

• A realization of an abstract simplicial complex *K* is a geometric simplicial complex *K<sub>g</sub>* whose corresponding abstract simplicial complex is isomorphic to *K*, i.e.

 $\exists \text{ bijective } f: \text{vert}(K) \to \text{vert}(K_g) \quad \text{s.t.} \quad \sigma \in K \quad \Rightarrow \quad f(\sigma) \in K_g$ 

• Any abstract simplicial complex K can be realized in  $\mathbb{R}^n$ 

Hint : 
$$v_i \to p_i = (0, ..., 0, 1, 0, ...0) \in \mathbb{R}^n$$
 $(n = \sharp vert(K))$  $\sigma = \operatorname{conv}(p_1, ..., p_n)$ (canonical simplex) $K_g \subseteq \sigma$ 

• Realizations are not unique but are all topologically equivalent (homeomorphic)

#### **Rips complex**

 $\sigma \subseteq \mathcal{P} \in \mathbf{R}(\mathcal{P}, \alpha) \iff \forall p, q \in \sigma \|p - q\| \le \alpha \iff \mathbf{B}\left(p, \frac{\alpha}{2}\right) \cap \mathbf{B}\left(q, \frac{\alpha}{2}\right) \neq \emptyset$ 



#### Construction of the Rips complex

- Interleaving :  $R(\mathcal{P}, \alpha) \subseteq C(\mathcal{P}, \alpha) \subseteq R(\mathcal{P}, 2\alpha)$
- Computing R(P, α) reduces to computing the graph G (vertices+edges) of R(P, α) and the cliques of G

## Triangulation of topological spaces





#### Triangulation of a topological space $\ensuremath{\mathbb{X}}$

A simplicial complex homeomorphic to  $\ensuremath{\mathbb{X}}$ 

#### See the next lectures

## Combinatorial (PL) manifolds

#### Definition

A simplicial complex  $\hat{S}$  is a PL manifold of dimension k iff the link of each vertex is the triangulation of a topological sphere of dimension k



The underlying space of a PL manifold is a topological manifold







#### Data structures to represent simplicial complexes

#### Atomic operations

- Look-up/Insertion/Deletion of a simplex
- Facets and subfaces of a simplex
- Cofaces, link of a simplex
- Topology preserving operations
  - Edge contractions
  - Elementary collapses





#### Explicit representation of all simplices ? of all incidence relations ?

#### The Hasse diagram



## The simplex tree is a prefix tree (trie)

- Index the vertices of *K*
- 2 associate to each simplex  $\sigma \in K$ , the sorted list of its vertices
- Istore the simplices in a trie.



## Performance of the simplex tree

- Explicit representation of all simplices
- #nodes =  $\#\mathcal{K}$
- depth = dim( $\mathcal{K}$ ) + 1
- #children $(\sigma) \leq \#$ cofaces $(\sigma) \leq deg(last(\sigma))$
- Memory complexity : O(1) per simplex
- Basic operations
  - ▶ Membership  $(\sigma)$  :  $O(d_{\sigma} \log n)$ ▶ Insertion  $(\sigma)$  :  $O(2^{d_{\sigma}} d_{\sigma} \log n)$

| Data          | $ \mathcal{P} $ | D  | d | r     | k  | $T_{g}$ | E               | $T_{\rm Rips}$ | $ \mathcal{K} $   | $T_{\rm tot}$ | $T_{\rm tot}/ \mathcal{K} $ |
|---------------|-----------------|----|---|-------|----|---------|-----------------|----------------|-------------------|---------------|-----------------------------|
| Bud           | 49,990          | 3  | 2 | 0.11  | 3  | 1.5     | 1,275,930       | 104.5          | $354,\!695,\!000$ | 104.6         | $3.0 \cdot 10^{-7}$         |
| Bro           | 15,000          | 25 | ? | 0.019 | 25 | 0.6     | 3083            | 36.5           | 116,743,000       | 37.1          | $3.2\cdot10^{-7}$           |
| Cy8           | 6,040           | 24 | 2 | 0.4   | 24 | 0.11    | $76,\!657$      | 4.5            | $13,\!379,\!500$  | 4.61          | $3.4 \cdot 10^{-7}$         |
| Kl            | 90,000          | 5  | 2 | 0.075 | 5  | 0.46    | 1,120,000       | 68.1           | $233,\!557,\!000$ | 68.5          | $2.9 \cdot 10^{-7}$         |
| $\mathbf{S4}$ | 50,000          | 5  | 4 | 0.28  | 5  | 2.2     | $1,\!422,\!490$ | 95.1           | $275,\!126,\!000$ | 97.3          | $3.6\cdot 10^{-7}$          |

#### Implemented in the GUDHI library

## Redundancy in the Simplex Tree



#### Minimal simplex automaton



• Compression time :  $O(m \log m \log n)$ 

[Hopcroft 1971]

- Static queries : unchanged
- Dynamic queries : more complex
- The size of the automaton depends on the labelling of the vertices Finding a minimal automaton is NP-complete

#### Minimal simplex automaton



• Compression time :  $O(m \log m \log n)$ 

[Hopcroft 1971]

- Static queries : unchanged
- Dynamic queries : more complex
- The size of the automaton depends on the labelling of the vertices Finding a minimal automaton is NP-complete

#### Experiments

#### **Data Set 1**: Rips Complex from sampling of Klein bottle in $\mathbb{R}^5$ .

| n      | α    | J  | k      |            | Size After  | Compression |
|--------|------|----|--------|------------|-------------|-------------|
|        |      |    |        | m          | Compression | Ratio       |
| 10,000 | 0.15 | 10 | 24,970 | 604,573    | 218,452     | 2.77        |
| 10,000 | 0.16 | 13 | 25,410 | 1,387,023  | 292,974     | 4.73        |
| 10,000 | 0.17 | 15 | 27,086 | 3,543,583  | 400,426     | 8.85        |
| 10,000 | 0.18 | 17 | 27,286 | 10,508,486 | 524,730     | 20.03       |

**Data Set 2 :** Flag complexes generated from random graph  $G_{n,p}$ .

|    |    | k   |            |       |  |
|----|----|-----|------------|-------|--|
| 25 | 17 |     | 315,370    | 467   |  |
|    | 18 |     | 4,438,559  | 627   |  |
|    | 17 | 181 | 3,841,591  | 779   |  |
| 40 | 19 | 204 | 9,471,220  |       |  |
|    | 20 |     | 25,784,504 | 1,163 |  |

#### Experiments

#### **Data Set 1**: Rips Complex from sampling of Klein bottle in $\mathbb{R}^5$ .

| n      | α    | J  | k      |            | Size After  | Compression |
|--------|------|----|--------|------------|-------------|-------------|
|        |      |    |        | m          | Compression | Ratio       |
| 10,000 | 0.15 | 10 | 24,970 | 604,573    | 218,452     | 2.77        |
| 10,000 | 0.16 | 13 | 25,410 | 1,387,023  | 292,974     | 4.73        |
| 10,000 | 0.17 | 15 | 27,086 | 3,543,583  | 400,426     | 8.85        |
| 10,000 | 0.18 | 17 | 27,286 | 10,508,486 | 524,730     | 20.03       |

**Data Set 2 :** Flag complexes generated from random graph  $G_{n,p}$ .

|    |      | 4  | k   | 100        | Size After  | Compression |
|----|------|----|-----|------------|-------------|-------------|
| n  | p    |    |     | m          | Compression | Ratio       |
| 25 | 0.8  | 17 | 77  | 315,370    | 467         | 537.3       |
| 30 | 0.75 | 18 | 83  | 4,438,559  | 627         | 7,079.0     |
| 35 | 0.7  | 17 | 181 | 3,841,591  | 779         | 4,931.4     |
| 40 | 0.6  | 19 | 204 | 9,471,220  | 896         | 10,570.6    |
| 50 | 0.5  | 20 | 306 | 25,784,504 | 1,163       | 22,170.7    |

## Simplex Array List

#### [B., Karthik C.S., Tavenas 2017]

Store only the maximal simplices



Memory storage :  $O\left(\sum_{\sigma \in K} d_{\sigma}\right) = O(kd)$ 

#### Optimal

## Proof of optimality

#### Theorem

Consider the class of all simplicial complexes  $\mathcal{K}(n,k,d)$  where  $d \ge 2$  and  $k \ge n+1$ .

Any data structure that can represent the simplicial complexes of this class requires  $\log {\binom{n/2}{d+1}}$  bits to be stored,

which is  $\Omega(kd \log n)$  for any constant  $\varepsilon \in (0, 1)$  and for  $\frac{2}{\varepsilon}n \le k \le n^{(1-\varepsilon)d}$  and  $d \le n^{\varepsilon/3}$ .

**Proof**  $\mathcal{P} = |\operatorname{vert}(K)|, \mathcal{P}' \subset \mathcal{P}, |\mathcal{P}'| = n/2$ 

Consider the set *S* of all simplicial complexes with vertex set  $\subset \mathcal{P}'$ , of dimension *d* and having k - n maximal simplices (all of dimension *d*) and observe that  $|S| = {\binom{n/2}{k-n}}$ 

Let  $K_1, ..., K_{|S|}$  be those complexes with vertex sets  $\mathcal{P}_1, ..., \mathcal{P}_{|S|}$ 

Complete each  $K_i$  with vertices in  $\mathcal{P} \setminus \mathcal{P}_i$  and edges spanning those vertices so that  $K_i^+$  has *n* vertices and *k* maximal simplices (of dimension 1 or *h*)

We have |S| complexes of  $\mathcal{K}(n, k, d, m)$ 

#### **Basic operations**

Complexity depends on a local parameter



 $\Gamma_i(\sigma) =$  number of maximal cofaces of  $\sigma$  of dimension i $\Gamma_i = \max_{\sigma \in K} \Gamma_i(\sigma)$ 

 $\begin{array}{ll} \text{Membership} \ (\sigma) : O\left(\sum_{i=0}^{d_{\sigma}-1} \, \Gamma_i(\sigma)\right) = O(\Gamma_0 d \log n) & \quad \text{ST} : O(d \log n) \\\\ \text{Insertion} \ (\sigma) : & \quad O(\Gamma_0(\sigma) d_{\sigma}^2 \log n) & = O(\Gamma_0 d^2) & \quad \text{ST} : O(d_{\sigma} 2^{d_{\sigma}} \log n) \end{array}$ 

#### **Experimental results**

Data Set 1 (Rips complex on a Klein bottle in  $\mathbb{R}^5$ )

| No | п      | α    | d  | k      | m          | $\Gamma_0$ | $\Gamma_1$ | $\Gamma_2$ | $\Gamma_3$ | SAL       |
|----|--------|------|----|--------|------------|------------|------------|------------|------------|-----------|
| 1  | 10,000 | 0.15 | 10 | 24,970 | 604,573    | 62         | 53         | 47         | 37         | 424,440   |
| 2  | 10,000 | 0.16 | 13 | 25,410 | 1,387,023  | 71         | 61         | 55         | 48         | 623,238   |
| 3  | 10,000 | 0.17 | 15 | 27,086 | 3,543,583  | 90         | 67         | 61         | 51         | 968,766   |
| 4  | 10,000 | 0.18 | 17 | 27,286 | 10,508,486 | 115        | 91         | 68         | 54         | 1,412,310 |

To be released in the GUDHI library (F. Godi)

#### Conclusions

#### Next lectures

- Other types of simplicial complexes
- Triangulation of manifolds

#### Open questions

- Bound on  $\Gamma_0$  for interesting simplicial complexes
- Lower bounds on query time assuming optimal storage  $O(kd \log n)$