Delaunay Triangulations of Manifolds

5. Delaunay triangulation of manifolds

Jean-Daniel Boissonnat

Winter School on Computational Geometry Tehran Polytechnic February 28 - March 5, 2018

Delaunay Triangulations of Manifolds

- Delaunay triangulations in Euclidean and Laguerre geometry
- 2 Good triangulations and meshes
- Triangulation of topological spaces
- Shape reconstruction
- Delaunay triangulation of manifolds

Triangulation of manifolds

A long standing problem

- A question of Poincaré
- Positive answer for differentiable manifolds [Cairns, Whitney, Whitehead 1940-50]
- Positive answer for topological manifolds of dimension ≤ 3 [Moïse 1952]
- Negative answer for topological manifolds of dimension ≥ 4 [Manolescu 2013]
- Last lecture : reconstruction of smooth submanifolds of R^d
 Today : meshing algorithms, Riemannian (intrinsic) manifolds

Anisotropic Delaunay triangulations

3 Delaunay triangulation of Riemannian manifolds

Restricted Delaunay triangulation $\text{Del}_{|S}(\mathcal{P})$

 $\mathrm{Del}_{|\mathcal{S}}(\mathcal{P}) = \{f \in \mathrm{Del}(\mathcal{P}) \mid \mathrm{Vor}(f) \cap \mathcal{S} \neq \emptyset\}$

 $= \{f \in \text{Del}(\mathcal{P}) \mid \exists \text{ empty ball } B_f \\ \text{circumscribing } f \text{ and centered on } \mathcal{S} \}$

Meshing volumes bounded by surfaces

Restricted Delaunay triangulation $\text{Del}_{|\Omega}(\mathcal{P})$

 $\mathrm{Del}_{|\mathcal{S}}(\mathcal{P}) = \{ f \in \mathrm{Del}(\mathcal{P}) \mid \mathrm{Vor}(f) \cap \Omega \neq \emptyset \}$

 $= \{f \in \text{Del}(\mathcal{P}) \mid \exists \text{ empty ball } B_f \text{ circumscribing } f \text{ and centered in } \Omega\}$

A variant of the nerve theorem [Edelsbrunner & Shah 1997]

Let \mathbb{M} be a compact manifold without boundary. If, for any face $f \in \operatorname{Vor}(\mathsf{P})$ s.t. $f \cap \mathbb{M} \neq \emptyset$,

• f intersects \mathbb{M} transversally

2 $f \cap \mathbb{M} = \emptyset$ or is a topological ball

then $\text{Del}_{\mathbb{M}}(\mathsf{P})\approx \mathbb{M}$

A variant of the nerve theorem [Edelsbrunner & Shah 1997]

Let \mathbb{M} be a compact manifold without boundary. If, for any face $f \in \operatorname{Vor}(\mathsf{P})$ s.t. $f \cap \mathbb{M} \neq \emptyset$,

• f intersects \mathbb{M} transversally

2 $f \cap \mathbb{M} = \emptyset$ or is a topological ball

then $\text{Del}_{\mathbb{M}}(\mathsf{P})\approx \mathbb{M}$

Proof of the closed ball property

Barycentric subdivision

of $\text{Vor}(\mathsf{P})\cap\mathbb{M}$

Approximation theorem for surfaces

Amenta et Bern [1998], Amenta et Dey [2002] Boissonnat et Cazals [2000], Boissonnat et Oudot [2005]

If ${\cal S}$ is a surface of \mathbb{R}^3 that is compact, without boundary and of positive reach $rch({\cal S})>0$

if \mathcal{P} is an ε -net of \mathcal{S} for a sufficiently small ε

alors $\text{Del}_{|\mathcal{S}}(\mathcal{P})$ is a triangulation of \mathcal{S} with all good properties

Surface mesh generation

Delaunay refinement

[Chew 1993, B. & Oudot 2003]

$$\begin{split} \phi: S \to \mathbb{R} &= \text{Lipschitz function} \\ \forall x \in S, \ 0 < \phi_0 \leq \phi(x) < \varepsilon \, \text{lfs}(x) \end{split}$$

ORACLE : For a facet f of $\text{Del}_{|s|}(\mathcal{P})$, return c_f , r_f and $\phi(c_f)$

A facet *f* is bad if $r_f > \phi(c_f)$

Algorithm
INIT Take a (small) initial sample $\mathcal{P}_0 \subset S$ REPEAT IF f is a bad facet
insert_in_Del3D(c_f) ,
update \mathcal{P} et $Del_{|S}(\mathcal{P})$ UNTIL there is no more bad facets

Surface mesh generation

Delaunay refinement

[Chew 1993, B. & Oudot 2003]

$$\begin{split} \phi: S \to \mathbb{R} &= \text{Lipschitz function} \\ \forall x \in S, \ 0 < \phi_0 \leq \phi(x) < \varepsilon \, \text{lfs}(x) \end{split}$$

ORACLE : For a facet f of $\text{Del}_{|s|}(\mathcal{P})$, return c_f , r_f and $\phi(c_f)$

```
A facet f is bad if r_f > \phi(c_f)
```


AlgorithmINITTake a (small) initial sample $\mathcal{P}_0 \subset S$ REPEATIF f is a bad facet
insert_in_Del3D(c_f),
update \mathcal{P} et $Del_{|S}(\mathcal{P})$ UNTILthere is no more bad facets

The algorithm in action

Properties of the meshing algorithm

Theorem

If $\ensuremath{\mathcal{S}}$ is a surface with positive reach, the Delaunay refinement algorithm outputs

- an $(\varepsilon + O(\varepsilon^2))$ -net \mathcal{P} of \mathcal{S}
- a PL surface \hat{S}
 - homeomorphic to S
 - close to S

Hausdorff and Fréchet distances = $O(\varepsilon^2)$ normal approximation = $O(\varepsilon)$

the facets are thick

The oracle allows to mesh surfaces represented under various

- Implicit surfaces f(x, y, z) = 0
- Isosurfaces in 3d images (Medical images)
- Remeshing of triangulated surfaces
- Surface reconstruction

Implicit surfaces

Remeshing of triangulated surfaces

Lipschitz surfaces

[B., Oudot 2006]

Marching cube

Delaunay refinement

Mesh gesh generation of 3D volumes

Delaunay refinement in higher dimensions

Thick triangulations : see Lecture 2

Sharp edges Use weighted Delaunay triangulations to conform to sharp edges

[Dey, Levine 2009], [Oudot, Rineau, Yvinec 2005]

2 Anisotropic Delaunay triangulations

Anisotropic mesh generation

Anisotropic mesh

- A simplicial complex
- Simplices are elongated along specified directions

Applications

- Mesh adaptation (solving PDE related to aniso. phenomena)
- Approximation of surfaces (curvature)
- Approximation of functions (Hessian)

Riemannian metric

Metric field *G*: Continuous map $G : x \in \Omega \mapsto G_x$ G_x positive symmetric definite matrix

Distances and lengths

$$\begin{split} \operatorname{length}(\gamma) &= \int \langle \dot{\gamma}, \dot{\gamma} \rangle_g^{1/2} \mathrm{d}t = \int \sqrt{\dot{\gamma}^t(t) G_{\gamma(t)} \dot{\gamma}(t)} \mathrm{d}t \\ d_G(p,q) &= \inf_{\gamma} \operatorname{length}(\gamma) \end{split}$$

Special cases

- Euclidean metric : $G_x = I$ at any x
- Uniform metric : $G_x = G$ at any x
- Approximation of functions defined over \mathbb{R}^d The anisotropy may be given by the Hessian

Riemannian Voronoi diagrams in (\mathbb{R}^d, G)

$$V_G(p_i) = \{x \in \mathbb{R}^d \mid d_G(p_i, x) \le d_G(p_j, x), \forall p_j \in \mathcal{P} \setminus p_i\}.$$

Riemannian VD

Nerve of the diagram

The Delaunay complex $Del_G(\mathcal{P})$ is the nerve of $V_G(\mathcal{P})$

A simple case : uniform metric

$$\forall x, \ G_x = G_p \\ d_{G_p}(x, y) = \sqrt{(x - y)^t G_p (x - y)}$$

The associated Voronoi diagram $Vor_{G_p}(\mathcal{P})$ is affine

$$d_{G_p}(x,a) < d_{G_p}(x,b) \quad \Leftrightarrow \quad (x-a)^t G_p(x-a) < (x-b)^t G_p(x-b)$$
$$\Leftrightarrow \quad -2a^t G_p x + a^t G_p a < -2b^t G_p x + b^t G_p b$$

Corollaries

+ The Delaunay complex $\text{Del}_{G_p}(\mathcal{P})$ is an embedded triangulation if \mathcal{P} is in general position

+ $\mathrm{Del}_{G_p}(\mathcal{P})$ can be computed efficiently

A simple case : uniform metric

$$\forall x, \ G_x = G_p \\ d_{G_p}(x, y) = \sqrt{(x - y)^t G_p (x - y)}$$

The associated Voronoi diagram $Vor_{G_p}(\mathcal{P})$ is affine

$$\begin{aligned} d_{G_p}(x,a) < d_{G_p}(x,b) & \Leftrightarrow \quad (x-a)^t G_p(x-a) < (x-b)^t G_p(x-b) \\ & \Leftrightarrow \quad -2a^t G_p x + a^t G_p a < -2b^t G_p x + b^t G_p b \end{aligned}$$

Corollaries

- + The Delaunay complex $\text{Del}_{G_p}(\mathcal{P})$ is an embedded triangulation if \mathcal{P} is in general position
- + $\text{Del}_{G_p}(\mathcal{P})$ can be computed efficiently

Riemannian Delaunay Triangulations

A counterexample to their existence

[B., Dyer, Ghosh, Nikolay 2017]

Sampling density is not enough

Approximation of Riemannian Voronoi diagrams

Anisotropic Voronoi diagrams

ullet $V(p)=\{x: d_p(x,p)\leq d_q(x,q) \ \ {
m for \ all} \ \ p,q\in P\}$ [Labelle & Shewchuk 2003]

• $V(p) = \{x : d_x(x,p) \le d_x(x,q) \text{ for all } p,q \in P\}$

[Du & Wang 2005] [Canas & Gortler 2012]

- LS-VAD is identical to the vertical projection of a Laguerre diagram in ℝ^D to a quadratic *d*-manifold, D = d(d + 3)/2
- Each site is within its cell
- Possibility of orphans (non-connected cells)
- The nerve may not be embedded

Guarantees

- LS-VAD is identical to the vertical projection of a Laguerre diagram in \mathbb{R}^D to a quadratic *d*-manifold, D = d(d+3)/2
- Each site is within its cell
- Possibility of orphans (non-connected cells)
- The nerve may not be embedded

Guarantees

- LS-VAD is identical to the vertical projection of a Laguerre diagram in ℝ^D to a quadratic *d*-manifold, D = d(d + 3)/2
- Each site is within its cell
- Possibility of orphans (non-connected cells)
- The nerve may not be embedded

Guarantees

- LS-VAD is identical to the vertical projection of a Laguerre diagram in ℝ^D to a quadratic *d*-manifold, D = d(d + 3)/2
- Each site is within its cell
- Possibility of orphans (non-connected cells)
- The nerve may not be embedded

Guarantees

A dual approximation

Locally uniform Delaunay complex

[B., Wormser, Yvinec 2015]

Definition A locally uniform Delaunay complex is a simplicial complex in which the star of each vertex is Delaunay for the (uniform) metric attached to the vertex

$$\forall p \in \mathcal{P}, \quad \mathrm{Del}_{G_{\mathcal{P}}}(\mathcal{P}) = \bigcup_{p \in \mathcal{P}} \operatorname{star}(p, \mathrm{Del}_{G_p}(\mathcal{P}))$$

Star stitching : make stars consistent s.t. $\text{Del}_{G_{\mathcal{P}}}(\mathcal{P})$ is a global triangulation

Conflicting stars

$$\tau \in \operatorname{star}(p) \Rightarrow t \in B_{G_p}(\tau)$$

$$\tau \notin \operatorname{star}(p) \Rightarrow t \notin B_{G_q}(\tau)$$

If τ is small and fat, and the metric field is Lipschitz continuous

```
⇒ the vertices of the (d + 1)-simplex \tau * t
are close to a (d - 1)-sphere
```

Theorem : If \mathcal{P} is a net which is sufficiently dense and protected, then all stars can be made consistent by perturbation and $\text{Del}_{G_{\mathcal{P}}}(\mathcal{P})$ is an embedded triangulation

Extensive empirical study

M. Rouxel-Labbé 2016

- Provably correct
- Extremely robust and (relatively) fast
- Elements conform to the anisotropy ...
-but not practical
 - No control over the number of elements
 - Exceedingly large amounts of vertices are generally required to achieve consistency

Extensive empirical study

M. Rouxel-Labbé 2016

- Provably correct
- Extremely robust and (relatively) fast
- Elements conform to the anisotropy ...
- ...but not practical
 - No control over the number of elements
 - Exceedingly large amounts of vertices are generally required to achieve consistency

Anisotropic Delaunay triangulations

Delaunay triangulation of Riemannian manifolds

A manifold endowed with a metric while we ignore the ambient space

Definition : a (smooth) Riemannian manifold (\mathbb{M}, G) is a real, smooth manifold \mathbb{M} equipped with an inner product G_x on the tangent space T_x at each point *x* that varies smoothly from point to point

The family G_x of inner products is called a Riemannian metric (tensor)

Exponential map

 $\mathbb M$ a differentiable manifold and p a point of $\mathbb M$

 $v \in T_p$ be a tangent vector to the manifold at p

An affine connection on $\mathbb M$ allows one to define the notion of a geodesic through p

There is a unique geodesic γ_{ν} satisfying $\gamma_{\nu}(0) = p$ with initial tangent vector $\gamma'_{\nu}(0) = v$

The corresponding exponential map is defined by

$$\exp_p(v) = \gamma_v(1)$$

Bounds on the metric distortion

Rauch theorem

Theorem $\forall x, y \in B(p, r)$,

$$\left(1 - \frac{\Lambda r^2}{2}\right) d_G(x, y) \le \|\exp_p(x) - \exp_p(y)\| \le \left(1 + \frac{\Lambda r^2}{2}\right) d_G(x, y)$$

where Λ is a bound on the absolute value of the sectional curvature of $\mathbb M$

Manifold Delaunay complex

Euclidean charts and local triangulations

[B., Dyer, Ghosh 2017]

- use the local Euclidean metric
- the metric is close to that on the manifold (Rauch th.)
- obtain protection in local coordinate charts
- the local stars are then consistent

Manifold Delaunay complex

(B., Dyer, Ghosh 2017)

 $F \colon (X, d_X) \to (Y, d_Y)$ is a ξ -distortion map if $|d_Y(F(x), F(y)) - d_X(x, y)| \le \xi d_X(x, y).$

Definition ((ϵ, η_0)-net)

• ϵ a sampling radius (for each $x \in \mathbb{M}$, $d_G(x, \mathsf{P}) < \epsilon$)

• for each
$$p,q \in \mathsf{P}, \; d_G(p,q) \geq \eta_0 \epsilon$$

Theorem (manifold Delaunay complex via perturbation)

- $\mathsf{P} \subset \mathbb{M}$ a (ϵ, η_0) net in each coordinate chart
- *ϵ* a local sampling radius
- each ϕ_p is a ξ -distortion map, $\xi \sim (\eta_0/2)^{m^3} \rho_0^m$,

• $\rho_0 = \rho/\epsilon < \eta_0/4$ bounds the magnitude of the perturbation ρ Then the perturbation algorithm produces a manifold Delaunay complex Del(P') for M.

Riemannian Delaunay triangulation

(Dyer, Vegter, Wintraecken, 2015); (B., Dyer, Ghosh 2017)

Theorem (Riemannian DT)

If $\mathsf{P} \subset \mathbb{M}$ is a (ϵ, η_0) -net with

$$\epsilon \leq \min\{rac{1}{4}\iota_{\mathbb{M}}, \ \sim \Lambda^{-rac{1}{2}}(\eta_0/2)^{m^3}
ho_0^m\},$$

then

- Del(P') is a Delaunay triangulation
- it admits a piecewise flat metric defined by geodesic edge lengths
- the barycentric coordinate map H: |Del(P')| → M is a ξ-distortion map with ξ ~ (η₀/2)^{m³}ρ₀^mΛε² (they're Gromov–Hausdorff close)

Local metric criteria for triangulation

B., Dyer, Ghosh, Wintraecken 2018

Theorem (triangulation)

 $H
ightarrow |\mathcal{A}|
ightarrow \mathbb{M}$ is a homeomorphism if we have (for all $p \in \mathsf{P}$) :

compatible atlases

- **2** simplex quality Every simplex $\sigma \in \text{star}(p) = \widehat{\Phi}_p(\text{star}(p))$ satisfies $s_0 \leq L(\sigma) \leq L_0$ and $t(\sigma) \geq t_0$.
- O distortion control *F_p* = φ_p *H* Φ⁻¹_p → |star(*p*)| → ℝ^m, when restricted to any *m*-simplex in star(*p*), is an orientation-preserving *ξ*-distortion map with

$$\xi < \frac{s_0 t_0^2}{12L_0} = \frac{1}{12} \mu_0 t_0^2.$$

Overtex sanity For all other vertices q ∈ P, if φ_p ∘ H(q) ∈ |star(p)|, then q is a vertex of star(p).

Anisotropic triangulations made practical?

Discrete Riemannian Voronoi diagrams

Geodesic distances cannot be computed exactly \Rightarrow must discretize

Canvas

The underlying structure used to compute geodesic distances

Many methods exist to compute geodesic distances and paths :

- Fast marching methods [Konukoglu et al. '07]
- Heat-kernel based methods [Crane et al. '13]
- Short-term vector Dijkstra [Campen et al. '13]

Anisotropic triangulations made practical?

Discrete Riemannian Voronoi diagrams

Geodesic distances cannot be computed exactly \Rightarrow must discretize

Canvas

The underlying structure used to compute geodesic distances

Many methods exist to compute geodesic distances and paths :

- Fast marching methods [Konukoglu et al. '07]
- Heat-kernel based methods [Crane et al. '13]
- Short-term vector Dijkstra [Campen et al. '13]

Generate the canvas

- Color each vertex of the canvas with the closest site
- Farthest point refinement algorithm for new sites
- Extract the nerve
- The discrete Delaunay complex is abstract, we define *straight* and *curved* realizations

- Generate the canvas
- Color each vertex of the canvas with the closest site
- Farthest point refinement algorithm for new sites
- Extract the nerve
- The discrete Delaunay complex is abstract, we define *straight* and *curved* realizations

- Generate the canvas
- Color each vertex of the canvas with the closest site
- Farthest point refinement algorithm for new sites
- Extract the nerve
- The discrete Delaunay complex is abstract, we define *straight* and *curved* realizations

- Generate the canvas
- Color each vertex of the canvas with the closest site
- Farthest point refinement algorithm for new sites
- Extract the nerve

The discrete Delaunay complex is abstract, we define *straight* and *curved* realizations

- Generate the canvas
- Color each vertex of the canvas with the closest site
- Farthest point refinement algorithm for new sites
- Extract the nerve
- The discrete Delaunay complex is abstract, we define *straight* and *curved* realizations

Discrete Riemannian Voronoi diagram

An example with 750 sites

Straight Delaunay triangulation

Delaunay complex realized using straight edges

Curved Delaunay triangulation

Delaunay complex realized using curved edges

Riemannian Delaunay triangulation

Results

[B., Rouxel-Labbé, Wintraecken 2017]

Delaunay Triangulations of Manifolds

A summary of the course

- Delaunay triangulations in Euclidean and Laguerre geometry
 - Affine diagrams, first attempts to go beyond the Euclidean case
- 2 Good triangulations and meshes
 - Nets, protection, stability of combinatorial structures, randomized algorithms, LLL
- Triangulation of topological spaces
 - Simplicial complexes for geometry modelling in higher dimensions
- Shape reconstruction
 - Submanifolds, curse of dimensionality, intrinsic dimension
- Delaunay triangulation of manifolds
 - Local (Riemannian) metric, anisotropic meshes, protection and stability again

H. Edelsbunner

Geometry and Topology for Mesh Generation, Cambridge 2001

T. Dey

Curve and surface reconstruction, Cambridge 2006

H. Edelsbrunner and J. Harer

Computational Topology, AMS 2010

S-W. Cheng, T. Dey, J. Shewchuk Delaunay Mesh Generation, CRC Press 2012.

J-D. Boissonnat, F. Chazal, M. Yvinec Geometric and Topological Inference, Cambridge 2018