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Delaunay Triangulations of Manifolds

@ Delaunay triangulations in Euclidean and Laguerre geometry
©@ Good triangulations and meshes

© Triangulation of topological spaces

@ Shape reconstruction

© Delaunay triangulation of manifolds
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Triangulation of manifolds

A long standing problem

@ A question of Poincaré

@ Positive answer for differentiable manifolds
[Cairns, Whitney, Whitehead 1940-50]

Hassler Whitney

@ Positive answer for topological manifolds of dimension < 3
[Moise 1952]

@ Negative answer for topological manifolds of dimension > 4
[Manolescu 2013]

@ Last lecture : reconstruction of smooth submanifolds of R¢
Today : meshing algorithms, Riemannian (intrinsic) manifolds
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0 Surface mesh generation
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Restricted Delaunay triangulation Deljs(P)

[Chew 93]

Del;s(P) = {f € Del(P) | Vor(f) N S # 0}

= {f € Del(P) | 3 empty ball By
circumscribing f and centered on S}
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Meshing volumes bounded by surfaces

Restricted Delaunay triangulation Del | (P)

Del;s(P) = {f € Del(P) | Vor(f) N Q2 # 0}

= {f € Del(P) | 3 empty ball B; circumscribing f and centered in Q}
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A variant of the nerve theorem  [Edelsbrunner & Shah 1997]

Let M be a compact manifold without boundary. If, for any face
fe€Vor(P) st fnM#0,

@ f intersects M transversally
@ fnM = or is a topological ball

then Dely(P) =~ M
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Let M be a compact manifold without boundary. If, for any face
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Proof of the closed ball property

Barycentric subdivision

of Vor(P) N M of Dely(P)
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Approximation theorem for surfaces

Amenta et Bern [1998], Amenta et Dey [2002]
Boissonnat et Cazals [2000], Boissonnat et Oudot [2005]

If S is a surface of R® that is compact, without boundary and of positive reach
rch(S) >0

if P is an e-net of S for a sufficiently small e

alors Del|s(P) is a triangulation of S with all good properties
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Surface mesh generation

Delaunay refinement

¢ : § — R = Lipschitz function
Vx €S, 0< ¢o < p(x) < elfs(x)

ORACLE : For a facet f of Del|s(P),
return ¢f, ry and ¢(cy)

Afacet f is bad if ry > ¢(cy)

[Chew 1993, B. & Oudot 2003]
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Surface mesh generation

Delaunay refinement [Chew 1993, B. & Oudot 2003]

¢ : § — R = Lipschitz function
Vx €S, 0< ¢o < p(x) < elfs(x)

ORACLE : For a facet f of Del|s(P),
return ¢s, ry and ¢(cy)

A facet f is bad if rr > ¢(cy)

Algorithm
INIT Take a (small) initial sample Py C S

REPEAT |IF f is a bad facet
insert_in_Del3D(c) ,
update P et Del;s(P)

UNTIL there is no more bad facets
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The algorithm in action
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Properties of the meshing algorithm

Theorem

If S is a surface with positive reach, the Delaunay refinement algorithm
outputs

@ an (¢ + 0(?))-net P of S
@ a PL surface S

» homeomorphicto §
» closeto S

Hausdorff and Fréchet distances = 0(£?)
normal approximation = O(¢)

» the facets are thick
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Applications
CGAL mesh

The oracle allows to mesh surfaces represented under various

@ Implicit surfaces f(x,y,z) =0

@ Isosurfaces in 3d images (Medical images)
@ Remeshing of triangulated surfaces

@ Surface reconstruction
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Implicit surfaces
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Remeshing of triangulated surfaces
[B., Oudot 2006]

Lipschitz surfaces
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Delaunay refinement

Marching cube
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Mesh gesh generation of 3D volumes

Delaunay refinement in higher dimensions

Thick triangulations : see Lecture 2
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Sharp edges

Use weighted Delaunay triangulations to conform to sharp edges

[Dey, Levine 2009], [Oudot, Rineau, Yvinec 2005]
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9 Anisotropic Delaunay triangulations
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Anisotropic mesh generation

Anisotropic mesh

@ A simplicial complex

@ Simplices are elongated along specified
directions

Applications

@ Mesh adaptation (solving PDE related
to aniso. phenomena)

@ Approximation of surfaces (curvature)

@ Approximation of functions (Hessian)
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Riemannian metric

Metric field G :  Continuous map G : x € Q — G,
G, positive symmetric definite matrix

Distances and lengths

tengtn(7) = [ (3.4t = [ /310G (0ar
ds(p,q) = igf length(~)

Special cases

@ Cuclidean metric : Gy =1 atanyx
@ Uniform metric: G,=G atanyx

@ Approximation of functions defined over R?
The anisotropy may be given by the Hessian
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Riemannian Voronoi diagrams in (R?, G)

VG(p,’) = {x S Rd | d(;(p,-,x) S dG(pj,x),ij S P\p,’}.
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Nerve of the diagram

Riemannian VD

The Delaunay complex Delg(P) is the nerve of V(P)
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A simple case : uniform metric

Vx, Gy = G,
dg,(x,y) = \/(x =) G, (x —y)

The associated Voronoi diagram Vorg, (P) is affine

dg,(x,a) < dg,(x,b) & (x—a)Gy(x—a) < (x—b)'G,(x—b)
& —2d'Gyx+ d'Gya < =2b'G,x + b'G,b
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A simple case : uniform metric

Vx, Gy = G,
dg,(x,y) = \/(x =) G, (x —y)

The associated Voronoi diagram Vorg, (P) is affine

dg,(x,a) < dg,(x,b) & (x—a)Gy(x—a) < (x—b)'G,(x—b)
& —2d'Gyx+ d'Gya < =2b'G,x + b'G,b

Corollaries

+ The Delaunay complex Delg, (P) is an embedded triangulation if P
is in general position

+ Delg,(P) can be computed efficiently
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Riemannian Delaunay Triangulations
A counterexample to their existence [B., Dyer, Ghosh, Nikolay 2017]

Sampling density is not enough
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Approximation of Riemannian Voronoi diagrams
Anisotropic Voronoi diagrams

@ V(p) ={x:d,(x,p) <dy(x,q) forall p,q € P} [Labelle & Shewchuk 2003]

@ V(p) = {x:d(x,p) < di(x,q) forall p,q € P}
[Du & Wang 2005] [Canas & Gortler 2012]
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Some properties of anisotropic Voronoi diagrams

@ LS-VAD is identical to the vertical projection of a Laguerre
diagram in R? to a quadratic d-manifold, D = d(d + 3)/2
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Some properties of anisotropic Voronoi diagrams

@ LS-VAD is identical to the vertical projection of a Laguerre
diagram in R? to a quadratic d-manifold, D = d(d + 3)/2
@ Each site is within its cell

Ba
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Some properties of anisotropic Voronoi diagrams

@ LS-VAD is identical to the vertical projection of a Laguerre
diagram in R? to a quadratic d-manifold, D = d(d + 3)/2

@ Each site is within its cell

@ Possibility of orphans (non-connected cells)

LN LN
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Some properties of anisotropic Voronoi diagrams

@ LS-VAD is identical to the vertical projection of a Laguerre
diagram in R? to a quadratic d-manifold, D = d(d + 3)/2

@ Each site is within its cell

@ Possibility of orphans (non-connected cells)

@ The nerve may not be embedded

LN B

Guarantees

Termination and quality bounds proven in 2D [Labelle, Shewchuk '03]
and surfaces [Cheng et al. '06], but no extension to higher dimensions
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A dual approximation
Locally uniform Delaunay complex [B., Wormser, Yvinec 2015]

Definition A locally uniform Delaunay complex is a simplicial complex

in which the star of each vertex is Delaunay for the (uniform) metric
attached to the vertex

Vp e P, Delg,(P)= U star(p, Delg, (P))

pEP

Star stitching : make stars consistent s.t. Delg,, (P) is a global
triangulation

T\"‘,ﬁ-ﬁ
S * }
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Conflicting stars

T € star(p) = t € Bg, ()

T & star(p) = t ¢ Bg,(T)

If 7 is small and fat, and the metric field is Lipschitz continuous

= the vertices of the (d + 1)-simplex 7 « ¢
are close to a (d — 1)-sphere

Theorem : If P is a net which is sufficiently dense and protected, then all stars

can be made consistent by perturbation and Delg,, (P) is an embedded
triangulation
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Extensive empirical study
M. Rouxel-Labbé 2016

@ Provably correct

@ Extremely robust and
(relatively) fast

@ Elements conform to the
anisotropy ...
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Extensive empirical study
M. Rouxel-Labbé 2016

@ Provably correct

@ Extremely robust and
(relatively) fast

@ Elements conform to the
anisotropy ...

@ .. .but not practical

» No control over the
number of elements

» Exceedingly large
amounts of vertices are
generally required to
achieve consistency
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e Delaunay triangulation of Riemannian manifolds
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Riemannian manifolds

A manifold endowed with a metric while we ignore the ambient space
Definition : a (smooth) Riemannian manifold (M, G) is a real, smooth
manifold M equipped with an inner product G, on the tangent space 7,
at each point x that varies smoothly from point to point

The family G, of inner products is called a Riemannian metric (tensor)
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Exponential map

M a differentiable manifold and p a point of M
v € T, be a tangent vector to the manifold at p

An affine connection on M allows one to define the
notion of a geodesic through p

There is a unique geodesic ~, satisfying +,(0) = p
with initial tangent vector v/(0) = v .

The corresponding exponential map is defined by

exp, (v) = (1)
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Bounds on the metric distortion

Rauch theorem

Theorem Vx,y € B(p, ),

Ar? Ar?

<1 - 2) dg(x,y) < | exp,(x) —exp,(y)[| < <1 + 2) da(x, y)

where A is a bound on the absolute value of the sectional curvature of
M
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Manifold Delaunay complex
Euclidean charts and local triangulations [B., Dyer, Ghosh 2017]

¢ J
:

@ use the local Euclidean metric

@ the metric is close to that on the manifold (Rauch th.)
@ obtain protection in local coordinate charts

@ the local stars are then consistent

33/44



Manifold Delaunay complex
(B., Dyer, Ghosh 2017)

F: (X,dx) — (Y,dy) is a ¢-distortion map if
|dY(F(X),F(y)) - dx(X,y)| < ng(X,y).

Definition ((e, no)-net)
@ ¢ a sampling radius (for each x € M, dg(x,P) <€)
@ foreach p,q € P, ds(p,q) > noe

Theorem (manifold Delaunay complex via perturbation)
@ P Cc M a (e,m0) netin each coordinate chart
@ ¢ alocal sampling radius
e each ¢, is a ¢-distortion map, & ~ (no/2)™ pi,
@ po = p/e < no/4 bounds the magnitude of the perturbation p

Then the perturbation algorithm produces a manifold Delaunay
complex Del(P’) for M.
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Riemannian Delaunay triangulation
(Dyer, Vegter, Wintraecken, 2015) ; (B., Dyer, Ghosh 2017)

Theorem (Riemannian DT)
IfP C M is a (e, no)-net with

1
e < min{Zus, ~A72(0/2)" of},

then
@ Del(P’) is a Delaunay triangulation
@ it admits a piecewise flat metric defined by geodesic edge lengths

@ the barycentric coordinate map H : |Del(P’)| — M is a ¢-distortion
map with § ~ (no/ 2)’”3 piAe? (they’re Gromov—Hausdorff close)
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Local metric criteria for triangulation
B., Dyer, Ghosh, Wintraecken 2018

Theorem (triangulation)

H — |A| — M is a homeomorphism if we have (for allp € P) :
@ compatible atlases

~

@ simplex quality Every simplex o € star(p) = ®,(star(p)) satisfies
so < L(o) < Ly and t(o) > 1.
@ distortion control F, = ¢, o Ho &' — [star(p)| — R”, when

restricted to any m-simplex in star(p), is an orientation-preserving
&-distortion map with

S 1n.
120, 1210

&<

Q vertex sanity For all other vertices q € P, if ¢, o H(q) € |star(p)],
then g is a vertex of star(p).
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Anisotropic triangulations made practical ?

Discrete Riemannian Voronoi diagrams

Geodesic distances cannot be computed exactly = must discretize
Canvas

The underlying structure used to compute geodesic distances

Many methods exist to compute geodesic

distances and paths : _
@ Fast marching methods [Konukoglu et al. '07] B \ '
@ Heat-kernel based methods [Crane etal. "13] -

@ Short-term vector Dijkstra [Campen et al.
!1 3]
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Anisotropic triangulations made practical ?

Discrete Riemannian Voronoi diagrams

Geodesic distances cannot be computed exactly = must discretize
Canvas

The underlying structure used to compute geodesic distances J

Many methods exist to compute geodesic
distances and paths :
@ Fast marching methods [Konukoglu et al. '07]
@ Heat-kernel based methods [Crane et al. '13]

@ Short-term vector Dijkstra [Campen et al.
!1 3]
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Construction of the discrete diagram

@ Generate the canvas
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Construction of the discrete diagram

@ Generate the canvas

@ Color each vertex of the canvas with
the closest site




Construction of the discrete diagram

@ Generate the canvas

@ Color each vertex of the canvas with
the closest site

@ Farthest point refinement algorithm
for new sites
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Construction of the discrete diagram

@ Generate the canvas

@ Color each vertex of the canvas with
the closest site

@ Farthest point refinement algorithm
for new sites

@ Extract the nerve

The discrete Delaunay complex is
abstract, we define straight and curved
realizations




Discrete Riemannian Voronoi diagram

An example with 750 sites
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Delaunay complex realized using straight edges

Straight Delaunay triangulation
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Curved Delaunay triangulation

Delaunay complex realized using curved edges




Riemannian Delaunay triangulation
Results [B., Rouxel-Labbé, Wintraecken 2017]

220 sites 6027 sites

42/44



Delaunay Triangulations of Manifolds

A summary of the course

@ Delaunay triangulations in Euclidean and Laguerre geometry
» Affine diagrams, first attempts to go beyond the Euclidean case

© Good triangulations and meshes

» Nets, protection, stability of combinatorial structures, randomized
algorithms, LLL

© Triangulation of topological spaces
» Simplicial complexes for geometry modelling in higher dimensions

© Shape reconstruction

» Submanifolds, curse of dimensionality, intrinsic dimension

© Delaunay triangulation of manifolds

» Local (Riemannian) metric, anisotropic meshes, protection and
stability again
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