
Delaunay Triangulations of Manifolds

5. Delaunay triangulation of manifolds

Jean-Daniel Boissonnat

Winter School on Computational Geometry
Tehran Polytechnic

February 28 - March 5, 2018

1 / 44

Delaunay Triangulations of Manifolds

1 Delaunay triangulations in Euclidean and Laguerre geometry
2 Good triangulations and meshes
3 Triangulation of topological spaces
4 Shape reconstruction
5 Delaunay triangulation of manifolds

2 / 44

Triangulation of manifolds
A long standing problem

Hassler Whitney

A question of Poincaré

Positive answer for differentiable manifolds
[Cairns, Whitney, Whitehead 1940-50]

Positive answer for topological manifolds of dimension ≤ 3
[Moïse 1952]

Negative answer for topological manifolds of dimension ≥ 4
[Manolescu 2013]

Last lecture : reconstruction of smooth submanifolds of Rd

Today : meshing algorithms, Riemannian (intrinsic) manifolds

3 / 44

1 Surface mesh generation

2 Anisotropic Delaunay triangulations

3 Delaunay triangulation of Riemannian manifolds

4 / 44

Restricted Delaunay triangulation Del|S(P)
[Chew 93]

Del|S(P) = {f ∈ Del(P) | Vor(f) ∩ S 6= ∅}

= {f ∈ Del(P) | ∃ empty ball Bf

circumscribing f and centered on S}

Context and Motivation

Delaunay refinement meshing engine

The algorithms refines:

Bad facets: f ∈ Del|S(P)
– oversized (sizing field)
– badly shaped (min angle bound)
– inaccurate (distance bound)

Bad Tetrahedra : t ∈ Del|O(P)
– oversized (sizing field)
– badly-shaped (radius-egde ratio)

Required oracle on domain to be meshed
• point location in domain and subdomains
• intersection detection/computation between boundary surfaces

and segments (Delaunay edges)

PA-MY (INRIA Geometrica) CGALmesh ARC-ADT-AE-2010 9 / 36

5 / 44

Meshing volumes bounded by surfaces
Restricted Delaunay triangulation Del|Ω(P)

Del|S(P) = {f ∈ Del(P) | Vor(f) ∩ Ω 6= ∅}

= {f ∈ Del(P) | ∃ empty ball Bf circumscribing f and centered in Ω}

6 / 44

A variant of the nerve theorem [Edelsbrunner & Shah 1997]

Let M be a compact manifold without boundary. If, for any face
f ∈ Vor(P) s.t. f ∩M 6= ∅,

1 f intersects M transversally

2 f ∩M = ∅ or is a topological ball

then DelM(P) ≈M

7 / 44

A variant of the nerve theorem [Edelsbrunner & Shah 1997]

Let M be a compact manifold without boundary. If, for any face
f ∈ Vor(P) s.t. f ∩M 6= ∅,

1 f intersects M transversally

2 f ∩M = ∅ or is a topological ball

then DelM(P) ≈M

7 / 44

Proof of the closed ball property

Barycentric subdivision

of Vor(P) ∩M of DelM(P)

8 / 44

Approximation theorem for surfaces

Amenta et Bern [1998], Amenta et Dey [2002]
Boissonnat et Cazals [2000], Boissonnat et Oudot [2005]

If S is a surface of R3 that is compact, without boundary and of positive reach
rch(S) > 0

if P is an ε-net of S for a sufficiently small ε

alors Del|S(P) is a triangulation of S with all good properties

9 / 44

Surface mesh generation
Delaunay refinement [Chew 1993, B. & Oudot 2003]

φ : S→ R = Lipschitz function
∀x ∈ S, 0 < φ0 ≤ φ(x) < ε lfs(x)

ORACLE : For a facet f of Del|S(P),
return cf , rf and φ(cf)

A facet f is bad if rf > φ(cf)

Context and Motivation

Delaunay refinement meshing engine

The algorithms refines:

Bad facets: f ∈ Del|S(P)
– oversized (sizing field)
– badly shaped (min angle bound)
– inaccurate (distance bound)

Bad Tetrahedra : t ∈ Del|O(P)
– oversized (sizing field)
– badly-shaped (radius-egde ratio)

Required oracle on domain to be meshed
• point location in domain and subdomains
• intersection detection/computation between boundary surfaces

and segments (Delaunay edges)

PA-MY (INRIA Geometrica) CGALmesh ARC-ADT-AE-2010 9 / 36

Algorithm
INIT Take a (small) initial sample P0 ⊂ S

REPEAT IF f is a bad facet
insert_in_Del3D(cf) ,
update P et Del|S(P)

UNTIL there is no more bad facets

10 / 44

Surface mesh generation
Delaunay refinement [Chew 1993, B. & Oudot 2003]

φ : S→ R = Lipschitz function
∀x ∈ S, 0 < φ0 ≤ φ(x) < ε lfs(x)

ORACLE : For a facet f of Del|S(P),
return cf , rf and φ(cf)

A facet f is bad if rf > φ(cf)

Context and Motivation

Delaunay refinement meshing engine

The algorithms refines:

Bad facets: f ∈ Del|S(P)
– oversized (sizing field)
– badly shaped (min angle bound)
– inaccurate (distance bound)

Bad Tetrahedra : t ∈ Del|O(P)
– oversized (sizing field)
– badly-shaped (radius-egde ratio)

Required oracle on domain to be meshed
• point location in domain and subdomains
• intersection detection/computation between boundary surfaces

and segments (Delaunay edges)

PA-MY (INRIA Geometrica) CGALmesh ARC-ADT-AE-2010 9 / 36

Algorithm
INIT Take a (small) initial sample P0 ⊂ S

REPEAT IF f is a bad facet
insert_in_Del3D(cf) ,
update P et Del|S(P)

UNTIL there is no more bad facets

10 / 44

The algorithm in action

11 / 44

Properties of the meshing algorithm

Theorem

If S is a surface with positive reach, the Delaunay refinement algorithm
outputs

an (ε+ O(ε2))-net P of S

a PL surface Ŝ

I homeomorphic to S

I close to S
Hausdorff and Fréchet distances = O(ε2)

normal approximation = O(ε)

I the facets are thick

12 / 44

Applications
CGAL mesh

The oracle allows to mesh surfaces represented under various

Implicit surfaces f (x, y, z) = 0

Isosurfaces in 3d images (Medical images)
Remeshing of triangulated surfaces
Surface reconstruction

13 / 44

Implicit surfaces

14 / 44

Remeshing of triangulated surfaces
Lipschitz surfaces [B., Oudot 2006]

Marching cube Delaunay refinement

15 / 44

Mesh gesh generation of 3D volumes
Delaunay refinement in higher dimensions

CGALmesh Achievements

Meshing 3D domains
Input from segmented 3D medical images

[INSERM] [SIEMENS]

PA-MY (INRIA Geometrica) CGALmesh ARC-ADT-AE-2010 22 / 36
Thick triangulations : see Lecture 2

16 / 44

Sharp edges
Use weighted Delaunay triangulations to conform to sharp edges

[Dey, Levine 2009], [Oudot, Rineau, Yvinec 2005]

CGALmesh Achievements

Meshing with sharp features
A polyhedral example

PA-MY (INRIA Geometrica) CGALmesh ARC-ADT-AE-2010 30 / 36

17 / 44

1 Surface mesh generation

2 Anisotropic Delaunay triangulations

3 Delaunay triangulation of Riemannian manifolds

18 / 44

Anisotropic mesh generation

Anisotropic mesh

A simplicial complex

Simplices are elongated along specified
directions

Applications

Mesh adaptation (solving PDE related
to aniso. phenomena)

Approximation of surfaces (curvature)

Approximation of functions (Hessian)

19 / 44

Riemannian metric

Metric field G : Continuous map G : x ∈ Ω 7→ Gx

Gx positive symmetric definite matrix

Distances and lengths

length(γ) =

∫
〈γ̇, γ̇〉1/2

g dt =

∫ √
γ̇t(t)Gγ(t)γ̇(t)dt

dG(p, q) = inf
γ

length(γ)

Special cases

Euclidean metric : Gx = I at any x

Uniform metric : Gx = G at any x

Approximation of functions defined over Rd

The anisotropy may be given by the Hessian
20 / 44

Riemannian Voronoi diagrams in (Rd,G)

VG(pi) = {x ∈ Rd | dG(pi, x) ≤ dG(pj, x), ∀pj ∈ P \ pi}.

Riemannian VD Nerve of the diagram

The Delaunay complex DelG(P) is the nerve of VG(P)

21 / 44

A simple case : uniform metric

∀x, Gx = Gp

dGp(x, y) =
√

(x− y)t Gp (x− y)

Local Delaunay Definitions

Locally uniform anisotropic meshes [Boissonnat et al. ’08]

For a fixed metric G, define:

G-distance dG(a, b) =
p

(a � b)tG(a � b)

G-spheres SG(c, r) = {x, dG(c, x) = r}
G-Delaunay empty G-sphere property

Mael Rouxel-Labbé Anisotropic Mesh Generation 13 / 64

The associated Voronoi diagram VorGp(P) is affine

dGp(x, a) < dGp(x, b) ⇔ (x− a)tGp(x− a) < (x− b)tGp(x− b)

⇔ −2atGpx + atGpa < −2btGpx + btGpb

Corollaries
+ The Delaunay complex DelGp(P) is an embedded triangulation if P

is in general position

+ DelGp(P) can be computed efficiently

22 / 44

A simple case : uniform metric

∀x, Gx = Gp

dGp(x, y) =
√

(x− y)t Gp (x− y)

Local Delaunay Definitions

Locally uniform anisotropic meshes [Boissonnat et al. ’08]

For a fixed metric G, define:

G-distance dG(a, b) =
p

(a � b)tG(a � b)

G-spheres SG(c, r) = {x, dG(c, x) = r}
G-Delaunay empty G-sphere property

Mael Rouxel-Labbé Anisotropic Mesh Generation 13 / 64

The associated Voronoi diagram VorGp(P) is affine

dGp(x, a) < dGp(x, b) ⇔ (x− a)tGp(x− a) < (x− b)tGp(x− b)

⇔ −2atGpx + atGpa < −2btGpx + btGpb

Corollaries
+ The Delaunay complex DelGp(P) is an embedded triangulation if P

is in general position

+ DelGp(P) can be computed efficiently

22 / 44

Riemannian Delaunay Triangulations
A counterexample to their existence [B., Dyer, Ghosh, Nikolay 2017]

Sampling density is not enough

23 / 44

Approximation of Riemannian Voronoi diagrams
Anisotropic Voronoi diagrams

V(p) = {x : dp(x, p) ≤ dq(x, q) for all p, q ∈ P} [Labelle & Shewchuk 2003]

V(p) = {x : dx(x, p) ≤ dx(x, q) for all p, q ∈ P}
[Du & Wang 2005] [Canas & Gortler 2012]

24 / 44

Some properties of anisotropic Voronoi diagrams

LS-VAD is identical to the vertical projection of a Laguerre
diagram in RD to a quadratic d-manifold, D = d(d + 3)/2
Each site is within its cell
Possibility of orphans (non-connected cells)
The nerve may not be embedded

Guarantees
Termination and quality bounds proven in 2D [Labelle, Shewchuk ’03]
and surfaces [Cheng et al. ’06], but no extension to higher dimensions

25 / 44

Some properties of anisotropic Voronoi diagrams

LS-VAD is identical to the vertical projection of a Laguerre
diagram in RD to a quadratic d-manifold, D = d(d + 3)/2
Each site is within its cell
Possibility of orphans (non-connected cells)
The nerve may not be embedded

Guarantees
Termination and quality bounds proven in 2D [Labelle, Shewchuk ’03]
and surfaces [Cheng et al. ’06], but no extension to higher dimensions

25 / 44

Some properties of anisotropic Voronoi diagrams

LS-VAD is identical to the vertical projection of a Laguerre
diagram in RD to a quadratic d-manifold, D = d(d + 3)/2
Each site is within its cell
Possibility of orphans (non-connected cells)
The nerve may not be embedded

Guarantees
Termination and quality bounds proven in 2D [Labelle, Shewchuk ’03]
and surfaces [Cheng et al. ’06], but no extension to higher dimensions

25 / 44

Some properties of anisotropic Voronoi diagrams

LS-VAD is identical to the vertical projection of a Laguerre
diagram in RD to a quadratic d-manifold, D = d(d + 3)/2
Each site is within its cell
Possibility of orphans (non-connected cells)
The nerve may not be embedded

Guarantees
Termination and quality bounds proven in 2D [Labelle, Shewchuk ’03]
and surfaces [Cheng et al. ’06], but no extension to higher dimensions

25 / 44

A dual approximation
Locally uniform Delaunay complex [B., Wormser, Yvinec 2015]

Definition A locally uniform Delaunay complex is a simplicial complex
in which the star of each vertex is Delaunay for the (uniform) metric
attached to the vertex

∀p ∈ P, DelGP (P) =
⋃

p∈P
star(p,DelGp(P))

Star stitching : make stars consistent s.t. DelGP (P) is a global
triangulation

v

Figure 3. A two-dimensional link triangulation, represented as a collec-
tion of two-dimensional stars.

Star flipping is a variant of star splaying that adds two more

ideas. First, the representation and the algorithm are recursive on

the dimensionality. For example, in a three-dimensional triangula-

tion, the star of a vertex v is represented by v’s link, which is a two-

dimensional triangulation. This two-dimensional triangulation is

represented by a set of two-dimensional stars, as illustrated in Fig-

ure 3. These stars are not required to agree with each other either.

Each two-dimensional star is represented by a one-dimensional link

triangulation (recall Figure 2). The one-dimensional triangulations

are called link rings, and unlike their higher-dimensional counter-

parts, they are always internally consistent.

Second, the workhorse of star flipping is the classic flip algo-

rithm, at every level of the recursion. To make a star locally con-

vex, star flipping tries to apply classic flipping within the link trian-

gulation. Only if classic flipping gets stuck before restoring local

convexity to a star does star flipping call itself recursively.

Star flipping, described in Section 5, seems likely to run faster

than star splaying if the input triangulation is close to Delaunay,

because it takes better advantage of the input triangulation.

3 Stars, Rays, and Cones

Star splaying is founded on several observations about the relation-

ships between stars, rays, polyhedral cones, convex hulls, and De-

launay triangulations.

Consider the convex hull H of a set V of vertices in Ed+1. (Com-

puting H is a standard way to compute a Delaunay triangulation in

Ed; see below.) Suppose that V is generic: no d + 2 points of V lie

on a common hyperplane. Then H is a simplicial polytope—every

facet of H is a d-simplex. Let ∂H denote the boundary triangula-

tion of H. For consistency, facets are d-simplices and ridges are

(d − 1)-simplices throughout this paper, whether in Ed+1 or in Ed.

Imagine wishing to compute not all of H, but just the star of one

vertex v of H—specifically, v’s star in ∂H, leaving out H proper.

See Figure 4(a). Define the set of rays that originate at v and pass

through other vertices of V , namely R = { "vw : w ∈ V\{v}}. Let Hv

be the convex hull of the rays R, illustrated in Figure 4(b). Hv is

a polyhedral cone with vertex v and H ⊂ Hv. The star of v wraps

around the tip of Hv like a paper shell around an ice cream cone.

The star is combinatorially equivalent to the cone’s boundary: the

face lattice for the proper faces of Hv is isomorphic to the face lat-

tice for the star of v. In the isomorphism, the rays on the boundary

of Hv are in one-to-one correspondence with the edges in v’s star

and the vertices in v’s link.

Let h be a hyperplane that separates v from all the other vertices

in V , illustrated in Figure 4(c). The cross-section P = Hv∩h = H∩h
is a d-polytope, namely the convex hull of the intersection points

{"r ∩ h : r ∈ R}. The face lattice of P’s boundary is isomorphic to
the face lattice of v’s link.

The central observation is that these three problems are essen-

tially equivalent: computing the star or link of v in the boundary

of the (d + 1)-dimensional convex hull H, computing the (d + 1)-

v

H

v

Hv

(a) (b)

Hv

v

h

P

(c)

Figure 4. (a) The star of v in a convex polyhedron H. (b) The convex
hull Hv of rays, a polyhedral cone whose boundary is combinatorially
equivalent to v’s star. (c) A cross-section of the cone is the convex hull
of the points where the rays intersect the cross-sectional hyperplane.

dimensional convex hull Hv of rays, and computing the d-dimen-

sional convex hull P of points. The wealth of ideas computational

geometers employ for the last problem apply immediately to the

first problem.

One way to compute H is to use a d-dimensional convex hull

algorithm to compute the star of each vertex in V individually.

Naively applied, this method is strikingly slow—its best-case run-

ning time is in Θ(n2), where n is the number of vertices in V . But

if the candidates for inclusion in the link of each vertex could be

pruned to a small number—say, a constant number of vertices in

each link—then the method becomes strikingly attractive, as it en-

tails just a linear number of constant-time convex hull computa-

tions.

At first glance, one inconvenience of this method appears to be

finding a corner-cutting hyperplane h. This step is not only unnec-

essary; it is unwise, because computing the intersections of the rays

in R with h introduces avoidable roundoff errors. Many algorithms

for computing convex hulls of point sets in Ed can be adapted to

compute convex hulls of rays originating at a common point v in

Ed+1, simply by replacing the orientation tests on d+1 points in Ed

with orientation tests on d + 2 points in Ed+1 (wherein v is always

one of those points).

The standard incremental insertion method for updating a convex

hull is the beneath-beyond method of Kallay [17], which adds one

new vertex (or ray) at a time and maintains after each addition the

convex hull of the vertices (or rays) processed so far. Let C be the

convex hull at a fixed moment in time between vertex insertions.

Let f be a facet of C. A point p is said to be beyond f if p and C

lie on opposite sides of the affine hull of f . The beneath-beyond

algorithm adds a vertex w and transforms C into conv(C ∪ w) by
finding and deleting every facet ofC that w is beyond, then creating

new facets that attach w to every ridge ofC that adjoins exactly one

surviving facet.

This idea works whether C is a convex hull of points or a convex

hull of rays with a common origin v. The latter circumstance is il-

lustrated in Figure 5. There is one important algorithmic difference

between these two circumstances: a ray can lie beyond every facet

of the cone C, meaning that the convex hull of the rays is Ed+1.

v

Figure 3. A two-dimensional link triangulation, represented as a collec-
tion of two-dimensional stars.

Star flipping is a variant of star splaying that adds two more

ideas. First, the representation and the algorithm are recursive on

the dimensionality. For example, in a three-dimensional triangula-

tion, the star of a vertex v is represented by v’s link, which is a two-

dimensional triangulation. This two-dimensional triangulation is

represented by a set of two-dimensional stars, as illustrated in Fig-

ure 3. These stars are not required to agree with each other either.

Each two-dimensional star is represented by a one-dimensional link

triangulation (recall Figure 2). The one-dimensional triangulations

are called link rings, and unlike their higher-dimensional counter-

parts, they are always internally consistent.

Second, the workhorse of star flipping is the classic flip algo-

rithm, at every level of the recursion. To make a star locally con-

vex, star flipping tries to apply classic flipping within the link trian-

gulation. Only if classic flipping gets stuck before restoring local

convexity to a star does star flipping call itself recursively.

Star flipping, described in Section 5, seems likely to run faster

than star splaying if the input triangulation is close to Delaunay,

because it takes better advantage of the input triangulation.

3 Stars, Rays, and Cones

Star splaying is founded on several observations about the relation-

ships between stars, rays, polyhedral cones, convex hulls, and De-

launay triangulations.

Consider the convex hull H of a set V of vertices in Ed+1. (Com-

puting H is a standard way to compute a Delaunay triangulation in

Ed; see below.) Suppose that V is generic: no d + 2 points of V lie

on a common hyperplane. Then H is a simplicial polytope—every

facet of H is a d-simplex. Let ∂H denote the boundary triangula-

tion of H. For consistency, facets are d-simplices and ridges are

(d − 1)-simplices throughout this paper, whether in Ed+1 or in Ed.

Imagine wishing to compute not all of H, but just the star of one

vertex v of H—specifically, v’s star in ∂H, leaving out H proper.

See Figure 4(a). Define the set of rays that originate at v and pass

through other vertices of V , namely R = { "vw : w ∈ V\{v}}. Let Hv

be the convex hull of the rays R, illustrated in Figure 4(b). Hv is

a polyhedral cone with vertex v and H ⊂ Hv. The star of v wraps

around the tip of Hv like a paper shell around an ice cream cone.

The star is combinatorially equivalent to the cone’s boundary: the

face lattice for the proper faces of Hv is isomorphic to the face lat-

tice for the star of v. In the isomorphism, the rays on the boundary

of Hv are in one-to-one correspondence with the edges in v’s star

and the vertices in v’s link.

Let h be a hyperplane that separates v from all the other vertices

in V , illustrated in Figure 4(c). The cross-section P = Hv∩h = H∩h
is a d-polytope, namely the convex hull of the intersection points

{"r ∩ h : r ∈ R}. The face lattice of P’s boundary is isomorphic to
the face lattice of v’s link.

The central observation is that these three problems are essen-

tially equivalent: computing the star or link of v in the boundary

of the (d + 1)-dimensional convex hull H, computing the (d + 1)-

v

H

v

Hv

(a) (b)

Hv

v

h

P

(c)

Figure 4. (a) The star of v in a convex polyhedron H. (b) The convex
hull Hv of rays, a polyhedral cone whose boundary is combinatorially
equivalent to v’s star. (c) A cross-section of the cone is the convex hull
of the points where the rays intersect the cross-sectional hyperplane.

dimensional convex hull Hv of rays, and computing the d-dimen-

sional convex hull P of points. The wealth of ideas computational

geometers employ for the last problem apply immediately to the

first problem.

One way to compute H is to use a d-dimensional convex hull

algorithm to compute the star of each vertex in V individually.

Naively applied, this method is strikingly slow—its best-case run-

ning time is in Θ(n2), where n is the number of vertices in V . But

if the candidates for inclusion in the link of each vertex could be

pruned to a small number—say, a constant number of vertices in

each link—then the method becomes strikingly attractive, as it en-

tails just a linear number of constant-time convex hull computa-

tions.

At first glance, one inconvenience of this method appears to be

finding a corner-cutting hyperplane h. This step is not only unnec-

essary; it is unwise, because computing the intersections of the rays

in R with h introduces avoidable roundoff errors. Many algorithms

for computing convex hulls of point sets in Ed can be adapted to

compute convex hulls of rays originating at a common point v in

Ed+1, simply by replacing the orientation tests on d+1 points in Ed

with orientation tests on d + 2 points in Ed+1 (wherein v is always

one of those points).

The standard incremental insertion method for updating a convex

hull is the beneath-beyond method of Kallay [17], which adds one

new vertex (or ray) at a time and maintains after each addition the

convex hull of the vertices (or rays) processed so far. Let C be the

convex hull at a fixed moment in time between vertex insertions.

Let f be a facet of C. A point p is said to be beyond f if p and C

lie on opposite sides of the affine hull of f . The beneath-beyond

algorithm adds a vertex w and transforms C into conv(C ∪ w) by
finding and deleting every facet ofC that w is beyond, then creating

new facets that attach w to every ridge ofC that adjoins exactly one

surviving facet.

This idea works whether C is a convex hull of points or a convex

hull of rays with a common origin v. The latter circumstance is il-

lustrated in Figure 5. There is one important algorithmic difference

between these two circumstances: a ray can lie beyond every facet

of the cone C, meaning that the convex hull of the rays is Ed+1.

26 / 44

Conflicting stars

p

q

r

t BGq

BGq(τ)

τ
τ ∈ star(p)⇒ t ∈ BGp(τ)

τ 6∈ star(p)⇒ t /∈ BGq(τ)

If τ is small and fat, and the metric field is Lipschitz continuous

⇒ the vertices of the (d + 1)-simplex τ ∗ t
are close to a (d − 1)-sphere

Theorem : If P is a net which is sufficiently dense and protected, then all stars
can be made consistent by perturbation and DelGP (P) is an embedded
triangulation

27 / 44

Extensive empirical study
M. Rouxel-Labbé 2016

Provably correct

Extremely robust and
(relatively) fast

Elements conform to the
anisotropy . . .

. . .but not practical

I No control over the
number of elements

I Exceedingly large
amounts of vertices are
generally required to
achieve consistency

28 / 44

Extensive empirical study
M. Rouxel-Labbé 2016

Provably correct

Extremely robust and
(relatively) fast

Elements conform to the
anisotropy . . .

. . .but not practical

I No control over the
number of elements

I Exceedingly large
amounts of vertices are
generally required to
achieve consistency

28 / 44

1 Surface mesh generation

2 Anisotropic Delaunay triangulations

3 Delaunay triangulation of Riemannian manifolds

29 / 44

Riemannian manifolds

A manifold endowed with a metric while we ignore the ambient space

Definition : a (smooth) Riemannian manifold (M,G) is a real, smooth
manifold M equipped with an inner product Gx on the tangent space Tx

at each point x that varies smoothly from point to point

The family Gx of inner products is called a Riemannian metric (tensor)

30 / 44

Exponential map

M a differentiable manifold and p a point of M

v ∈ Tp be a tangent vector to the manifold at p

An affine connection on M allows one to define the
notion of a geodesic through p

There is a unique geodesic γv satisfying γv(0) = p
with initial tangent vector γ′v(0) = v

The corresponding exponential map is defined by

expp(v) = γv(1)

31 / 44

Bounds on the metric distortion
Rauch theorem

Theorem ∀x, y ∈ B(p, r),

(
1− Λr2

2

)
dG(x, y) ≤ ‖ expp(x)− expp(y)‖ ≤

(
1 +

Λr2

2

)
dG(x, y)

where Λ is a bound on the absolute value of the sectional curvature of
M

32 / 44

Manifold Delaunay complex
Euclidean charts and local triangulations [B., Dyer, Ghosh 2017]Delaunay triangulation of manifolds

Local approach

obtain protection in local coordinate charts

use the local Euclidean metric

the metric is close to that on the manifold

in fact, only transition functions are used

R. Dyer (MSP/INRIA) Triangulating manifolds CdF 2017.06.08 15 / 32

use the local Euclidean metric
the metric is close to that on the manifold (Rauch th.)
obtain protection in local coordinate charts
the local stars are then consistent

33 / 44

Manifold Delaunay complex
(B., Dyer, Ghosh 2017)

F : (X, dX)→ (Y, dY) is a ξ-distortion map if

|dY(F(x),F(y))− dX(x, y)| ≤ ξdX(x, y).

Definition ((ε, η0)-net)
ε a sampling radius (for each x ∈M, dG(x,P) < ε)
for each p, q ∈ P, dG(p, q) ≥ η0ε

Theorem (manifold Delaunay complex via perturbation)
P ⊂M a (ε, η0) net in each coordinate chart
ε a local sampling radius
each φp is a ξ-distortion map, ξ ∼ (η0/2)m3

ρm
0 ,

ρ0 = ρ/ε < η0/4 bounds the magnitude of the perturbation ρ
Then the perturbation algorithm produces a manifold Delaunay
complex Del(P′) for M.

34 / 44

Riemannian Delaunay triangulation
(Dyer, Vegter, Wintraecken, 2015) ; (B., Dyer, Ghosh 2017)

Theorem (Riemannian DT)
If P ⊂M is a (ε, η0)-net with

ε ≤ min
{1

4
ιM, ∼ Λ−

1
2 (η0/2)m3

ρm
0
}
,

then
Del(P′) is a Delaunay triangulation
it admits a piecewise flat metric defined by geodesic edge lengths
the barycentric coordinate map H : |Del(P′)| →M is a ξ-distortion
map with ξ ∼ (η0/2)m3

ρm
0 Λε2 (they’re Gromov–Hausdorff close)

35 / 44

Local metric criteria for triangulation
B., Dyer, Ghosh, Wintraecken 2018

Theorem (triangulation)
H → |A| →M is a homeomorphism if we have (for all p ∈ P) :

1 compatible atlases
2 simplex quality Every simplex σ ∈ star(p) = Φ̂p(star(p)) satisfies

s0 ≤ L(σ) ≤ L0 and t(σ) ≥ t0.
3 distortion control Fp = φp ◦ H ◦ Φ̂−1

p → |star(p)| → Rm, when
restricted to any m-simplex in star(p), is an orientation-preserving
ξ-distortion map with

ξ <
s0t2

0
12L0

=
1
12
µ0t2

0.

4 vertex sanity For all other vertices q ∈ P, if φp ◦ H(q) ∈ |star(p)|,
then q is a vertex of star(p).

36 / 44

Anisotropic triangulations made practical ?
Discrete Riemannian Voronoi diagrams

Geodesic distances cannot be computed exactly⇒ must discretize

Canvas
The underlying structure used to compute geodesic distances

Many methods exist to compute geodesic
distances and paths :

Fast marching methods [Konukoglu et al. ’07]
Heat-kernel based methods [Crane et al. ’13]
Short-term vector Dijkstra [Campen et al.
’13]

37 / 44

Anisotropic triangulations made practical ?
Discrete Riemannian Voronoi diagrams

Geodesic distances cannot be computed exactly⇒ must discretize

Canvas
The underlying structure used to compute geodesic distances

Many methods exist to compute geodesic
distances and paths :

Fast marching methods [Konukoglu et al. ’07]
Heat-kernel based methods [Crane et al. ’13]
Short-term vector Dijkstra [Campen et al.
’13]

37 / 44

Construction of the discrete diagram

Generate the canvas
Color each vertex of the canvas with
the closest site
Farthest point refinement algorithm
for new sites
Extract the nerve

The discrete Delaunay complex is
abstract, we define straight and curved
realizations

38 / 44

Construction of the discrete diagram

Generate the canvas
Color each vertex of the canvas with
the closest site
Farthest point refinement algorithm
for new sites
Extract the nerve

The discrete Delaunay complex is
abstract, we define straight and curved
realizations

38 / 44

Construction of the discrete diagram

Generate the canvas
Color each vertex of the canvas with
the closest site
Farthest point refinement algorithm
for new sites
Extract the nerve

The discrete Delaunay complex is
abstract, we define straight and curved
realizations

38 / 44

Construction of the discrete diagram

Generate the canvas
Color each vertex of the canvas with
the closest site
Farthest point refinement algorithm
for new sites
Extract the nerve

The discrete Delaunay complex is
abstract, we define straight and curved
realizations

38 / 44

Construction of the discrete diagram

Generate the canvas
Color each vertex of the canvas with
the closest site
Farthest point refinement algorithm
for new sites
Extract the nerve

The discrete Delaunay complex is
abstract, we define straight and curved
realizations

38 / 44

Discrete Riemannian Voronoi diagram

An example with 750 sites

Straight Delaunay triangulation
Delaunay complex realized using straight edges

Curved Delaunay triangulation
Delaunay complex realized using curved edges

Riemannian Delaunay triangulation
Results [B., Rouxel-Labbé, Wintraecken 2017]

220 sites 6027 sites

42 / 44

Delaunay Triangulations of Manifolds
A summary of the course

1 Delaunay triangulations in Euclidean and Laguerre geometry
I Affine diagrams, first attempts to go beyond the Euclidean case

2 Good triangulations and meshes
I Nets, protection, stability of combinatorial structures, randomized

algorithms, LLL

3 Triangulation of topological spaces
I Simplicial complexes for geometry modelling in higher dimensions

4 Shape reconstruction
I Submanifolds, curse of dimensionality, intrinsic dimension

5 Delaunay triangulation of manifolds
I Local (Riemannian) metric, anisotropic meshes, protection and

stability again

43 / 44

Bibliography

H. Edelsbunner
Geometry and Topology for Mesh Generation, Cambridge 2001

T. Dey
Curve and surface reconstruction, Cambridge 2006

H. Edelsbrunner and J. Harer
Computational Topology, AMS 2010

S-W. Cheng, T. Dey, J. Shewchuk
Delaunay Mesh Generation, CRC Press 2012.

J-D. Boissonnat, F. Chazal, M. Yvinec
Geometric and Topological Inference, Cambridge 2018

44 / 44

	Surface mesh generation
	Anisotropic Delaunay triangulations
	Delaunay triangulation of Riemannian manifolds

